

A Trinity Consultants Company

JANUARY 2025

PORT OF ROCKHAMPTON WATER QUALITY **MONITORING PROGRAM: 2024 ANNUAL REPORT**

GLADSTONE PORTS CORPORATION (GPC)

+61749727530 PO BOX 1267, GLADSTONE QLD 4680

+61749727530 Unit 3, 165 Auckland Street, Gladstone Level 3, 43 Peel Street, South Brisbane PO BOX 3901, SOUTH BRISBANE QLD 4101 CHRISTCHURCH, NEW ZEALAND, 8023

+64 273 053 353 35/115 Bamford Street, Woolston

REPORT CONTRIBUTORS

Role	Team member
Project Management	Felicity Melville
Fieldwork	Mark Jensen, James Hayman, Melanie Alpen, Carys Hanning, Grace Nord, Anna Skillington, Michael Baird
Reporting & Review	Felicity Melville, Anna Skillington

CITATION

This report should be cited as:

Vision Environment (2025). *Port of Rockhampton Water Quality Monitoring Program: 2024 Annual Report.* Vision Environment ANZ, A Trinity Consultants Australia Company, Gladstone, Australia.

DOCUMENT CONTROL

Document draft	Originated by	Edit and review	Date		
Draft issued to Client	AS	FM	29/01/2025		
Final issued to client	GPC	AS	31/01/2025		

DISCLAIMER

Every care is taken to ensure the accuracy of the data and interpretation provided. Vision Environment makes no representation or warranties about the accuracy, reliability, completeness or suitability for any particular purpose, and disclaims all responsibility and all liability for all expenses, losses, damages which may be incurred as a result of this product being inaccurate.

FILE REFERENCE

31012025 FINAL GPC PoR Water Monitoring Annual Report 2024 _VE

EXECUTIVE SUMMARY

Vision Environment ANZ has undertaken ambient water quality monitoring at the Port of Rockhampton (PoR) since 2014, in order to establish a valid ambient dataset for comparison during future maintenance dredging campaigns at this port. Sampling is undertaken concurrently with the Port Curtis Integrated Monitoring Program (PCIMP) surveys in Gladstone harbour, in order to provide easy comparisons of data across the different monitoring programs.

During 2024, monitoring of water physicochemical parameters, nutrients, chlorophyll *a* and metal(loid) concentrations was undertaken in March, June, August and November at three sites. Water quality results were compared to Water Quality Objectives (WQO) for the Fitzroy and Curtis Island Basin, as well as results gained from adjacent and reference PCIMP zones.

Sub-surface physicochemical parameters were similar across the PoR sites within each survey but often varied across the surveys due to metocean influences such as ambient temperature and rainfall. Water pH remained within recommended WQO ranges throughout the year, while sub-surface turbidity and total suspended solid (TSS) concentrations often exceeded the 80th percentile WQO. Lowest turbidity and TSS were recorded during the June survey. Dissolved oxygen concentrations also exceeded the 80th WQO during most surveys, indicating well-oxygenated waters.

Total nutrients and metal(loid) concentrations somewhat paralleled turbidity and TSS results, with lowest concentrations evident during the June survey. Exceedances of recommended WQO for nutrient concentrations regularly occurred. However, no metal(loid) concentrations exceeded the 95% species protection AWQG.

In comparison with adjacent and reference PCIMP zones, the PoR exhibited significantly higher turbidity, TSS, total nutrients and metal(loid)s concentrations. Dissolved nutrient and metal(loid) forms were found to be reasonable similar across PoR and the PCIMP sites.

Higher total nutrients and metal(loid)s at PoR in comparison with Port Curtis has been recorded during multiple years of monitoring. It is likely that the higher concentration of suspended particles within the water at PoR in comparison with Port Curtis is resulting in the elevated total nutrients and metal(loid)s.

TABLE OF CONTENTS

1	INT	RODL	JCTION	.1
2	ME	THOD	OLOGY	.1
	2.1	Mon	IITORING SITES	. 1
3	RES	SULT	S & DISCUSSION	.6
	3.1	MET	OCEAN CONDITIONS	.6
	3.2	Рнуз	SICOCHEMICAL PARAMETERS	.8
	3.2.	1	PoR	.8
	3.2.	2	Comparison with PCIMP Results	12
	3.3	CHLO	DROPHYLL A AND NUTRIENTS	12
	3.3.	1	PoR	12
	3.3.	2	Comparison with PCIMP Results	12
	3.4	Тоти	AL AND DISSOLVED METAL(LOID)S	16
	3.4.	1	PoR	16
	3.4.	2	Comparison with PCIMP Results	16
4	REF	FERE	NCES	24
5	APF	PEND	IX	26
	5.1	QA/	QC SUMMARY	27

LIST OF TABLES

Table 1 Summary of ambient conditions during water sampling undertaken in 2024	6
Table 2 Mean sub-surface physicochemical parameters at PoR sites during 2024 surveys	9
Table 3 Chlorophyll a and nutrient concentrations at PoR during 2024 surveys	.13
Table 4 Total and dissolved metal concentrations at PoR during 2024 surveys	.17
Table A1. Summary of project quality objectives	.27
Table A2 Whole water column physicochemical parameters and TSS at PoR, and adjacent a	and
reference PCIMP zones during 2024 surveys.	.28
Table A3 Chlorophyll a and nutrient concentrations at PoR, and adjacent and reference PCIMP zor	nes
during 2024 surveys	.29
Table A4 Total and dissolved metal concentrations at PoR, and adjacent and reference PCIMP zor	nes
during 2024 surveys	.30
Table A5 Results of two-way ANOVAs for PoR statistical comparison with PCIMP zones	.33

LIST OF FIGURES

Figure 1 Location of the three monitoring sites for GPC PoR Water Quality monitoring2
Figure 2 Location of PCIMP water quality monitoring sites in 2024
Figure 3 Location of PoR sites in comparison with sites in adjacent PCIMP zones (Narrows and Western
Basin) and PCIMP reference sites (Colosseum Inlet and Rodds Bay)4
Figure 4 Rockhampton rainfall, wind, Fitzroy River flow (station 130005A), Calliope River flow
(station132001A) and lunar phases during 2024 in relation to sampling events
Figure 5 Windrose of daily maximum wind gusts at Rockhampton Airport Station during 20248
Figure 6 Temperature, conductivity, pH and dissolved oxygen at PoR, and adjacent and reference
PCIMP zones during each survey10
Figure 7 Turbidity and total suspended solids at PoR, and adjacent and reference PCIMP zones during
each survey11
Figure 8 Total phosphorus, FRP, chlorophyll a and total nitrogen concentrations at PoR, and adjacent
and reference PCIMP zones during each survey14
Figure 9 Mean ammonia, NOx, TOC and DOC concentrations at PoR, and adjacent and reference
PCIMP zones during each survey15
Figure 10 Total and dissolved aluminium and arsenic concentrations at PoR, and adjacent and
reference PCIMP zones during each survey
Figure 11 Total chromium and copper and total and dissolved iron concentrations at PoR, and adjacent
and reference PCIMP zones during each survey
Figure 12 Total and dissolved manganese and molybdenum concentrations at PoR, and adjacent and
reference PCIMP zones during each survey
Figure 13 Total and dissolved molybdenum and nickel concentrations at PoR, and adjacent and
reference PCIMP zones during each survey
Figure 14 Total and dissolved zinc at PoR, and adjacent and reference PCIMP zones during each
survey
Figure A1 Depth-profiled physicochemical parameters at all Port of Rockhampton sites during 2024.

ALS	Australian Laboratory Services
ANOVA	Analysis of Variance
APHA	American Public Health Association
AWQG	Australian Water Quality Guidelines
BOM	Bureau of Meteorology
DEHP	Department of Environment and Heritage Protection (now DES)
DES	Department of Environment and Science
DOC	Dissolved Organic Carbon
DSITIA	Department of Science, Information Technology, Innovation and the Arts, Queensland
FB	Field Blank
FRP	Filterable Reactive Phosphorus
GPC	Gladstone Ports Corporation Ltd
LOR	Limit of Reporting
LSD	Least Significant Difference
LMDMP	Long-Term Maintenance Dredging Management Plan
NMI	National Measurement Institute
NW	Narrows
PCIMP	Port Curtis Integrated Monitoring Program
PoG	Port of Gladstone
PoR	Port of Rockhampton
RB	Rodds Bay
RCI	Reference Colosseum Inlet
QA/QC	Quality Assurance/Quality Control
QWQG	Queensland Water Quality Guidelines
SE	Standard error
TOC	Total Organic Carbon
TSS	Total Suspended Solids
VE	Vision Environment ANZ
WB	Western Basin
WQG	Water Quality Guidelines
WQO	Water Quality Objectives

ACRONYMS

1 INTRODUCTION

The Port of Rockhampton (PoR) is situated in the Fitzroy River delta area, and is managed by Gladstone Ports Corporation Ltd (GPC). Maintenance dredging at PoR is guided by the Long-Term Maintenance Dredging Management Plan (LMDMP) for the PoR (GPCL 2023), which has the objective to provide a long term sustainable approach to maintenance dredging. While dredging is predicted to occur every five years or longer, the most recent maintenance dredge program at this port occurred in 2011.

Ambient water quality monitoring at PoR sites (Figure 1) has been undertaken since 2014 (Vision Environment 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024), and is used to establish a valid ambient dataset for comparison during future dredging campaigns. Quarterly water quality monitoring at PoR coincides with the Port Curtis Integrated Monitoring Program (PCIMP) monitoring (Figure 2), with methodologies aligning to provide easy comparisons of both current and historical data.

This annual report provides an overview of the water quality data collected during 2024, in addition to a comparison of results collected from adjacent and reference PCIMP zones (Figure 3).

2 METHODOLOGY

2.1 Monitoring Sites

Monitoring was undertaken by VE personnel, who are qualified and experienced in water quality monitoring. Works were undertaken using sampling procedures which have been derived from standard protocols published by worldwide authorities, including:

- Australian and New Zealand Standards for water quality sampling (AS/NZS 1998a, b, c)
- The American Public Health Association Standard Methods for the Examination of Water and Wastewater (APHA 2017)
- Australian and New Zealand Water Quality Guidelines (AWQG) (ANZG 2018, 2021)
- Queensland Water Quality Guidelines (DERM 2009)
- Department of Environment and Science Monitoring and Sampling Manual (DES 2018).

The sampling methodology is summarised below:

Activity	Description
	Monitoring was undertaken at three sites (PoR1, PoR2 and PoR3), located in a shallow (~ 4 to 10 m depth) mangrove dominated estuary, which is highly influenced by large tidal flows (~ 0.4 m/s).
Monitoring	PCIMP zones adjacent to and/or similar in ambient conditions to PoR (Figure 2 and 3) included:
Sites	Narrows (six sites: NW10 to NW60)
Chee	Western Basin (six sites: WB10 to WB60).
	PCIMP Reference zones for comparison included
	Colosseum Inlet (four sites: RCI10 to RCI40)
	Rodds Bay (three sites: RB10 to RB30).
Monitoring Frequency	REMP surveys were undertaken on four occasions aligning with PCIMP monitoring in March, June, August and November 2024.

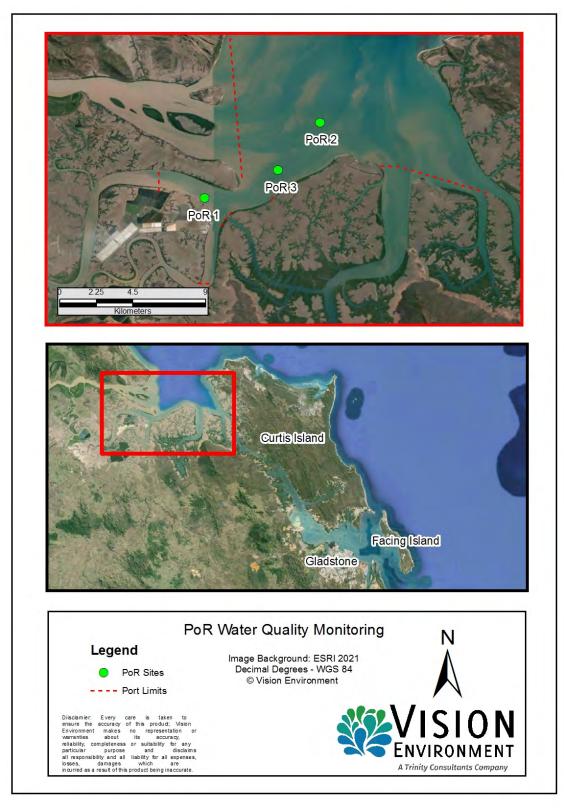


Figure 1 Location of the three monitoring sites for GPC PoR Water Quality monitoring.

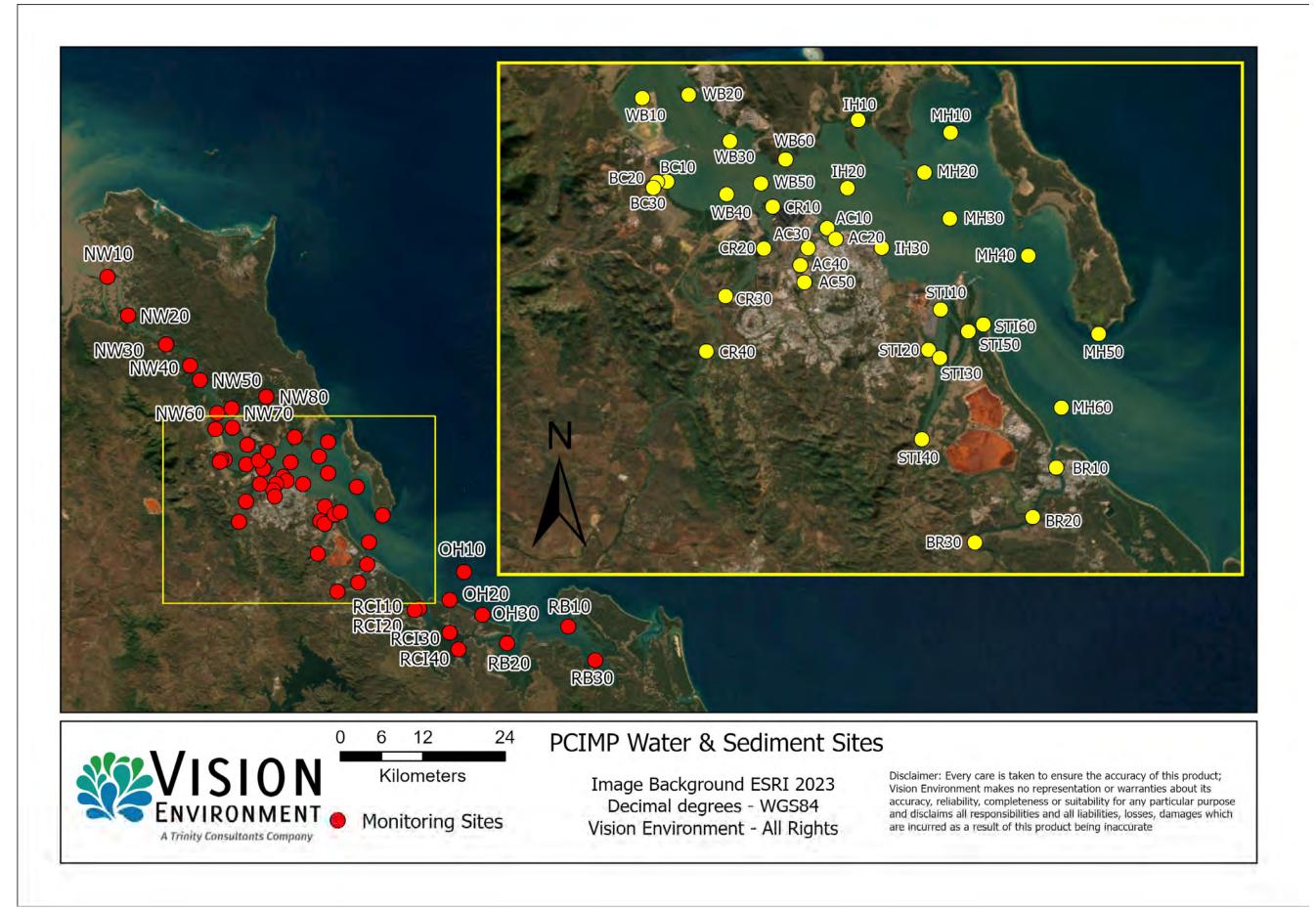
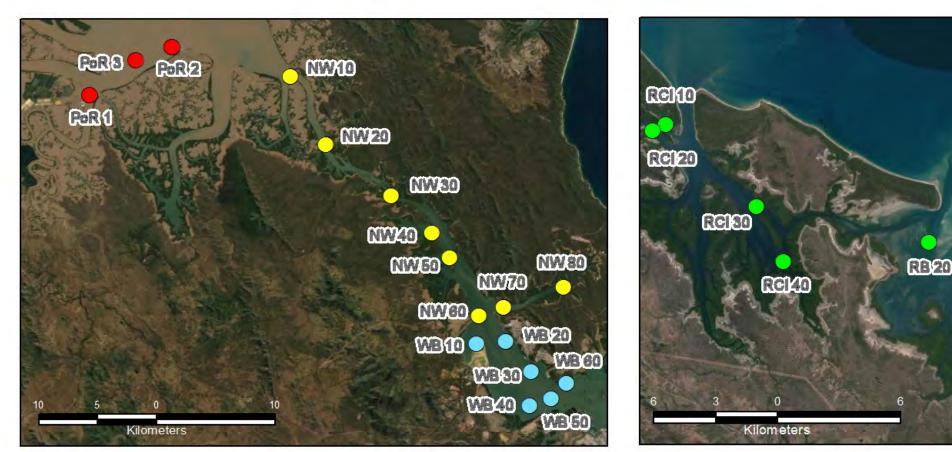
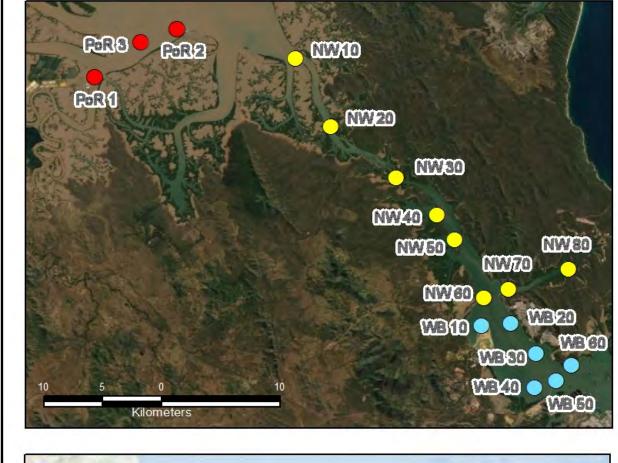



Figure 2 Location of PCIMP water quality monitoring sites in 2024.

PoR and Comparative PCIMP sites


Image Background: ESRI 2020 Decimal Degrees - WGS 84 © Vision Environment - All Rights Reserved

Legend

- PCIMP Reference sites
- PoR sites
- PCIMP Narrows sites 0
- PCIMP Western Basin sites 0

Disclamier: Every care is taken to ensure the accuracy of this product; Vision Environment makes no representation or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and disclaims all responsibility and all liability for all expenses, losses, damages which are incurred as a result of this product being inaccurate.

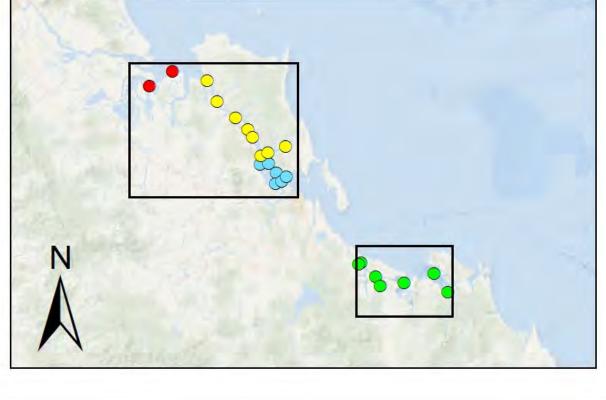


Figure 3 Location of PoR sites in comparison with sites in adjacent PCIMP zones (Narrows and Western Basin) and PCIMP reference sites (Colosseum Inlet and Rodds Bay).

Activity	Description
<i>In-situ</i> Measurements	Measurements of physicochemical parameters (temperature, electrical conductivity, pH, turbidity and dissolved oxygen) were undertaken <i>in situ</i> using a calibrated YSI ProDSS multiparameter water quality meter. Measurements were undertaken at approximately 0.5 to 1.0 m depth intervals at each site.
	Concurrent light measurements using a LI-COR LI192 Underwater Quantum sensor to calculate the vertical light attenuation coefficient (Kd) were also undertaken.
	Water samples were collected at the sub-surface (0.5 m depth) using pre- acid washed Nalgene bottles (triple rinsed in Milli-Q and site water) in a Perspex pole sampler. Powder free gloves were worn to avoid contamination.
	Samples not requiring filtration were decanted directly into the laboratory provided sample bottles.
Sample Collection	Samples that required filtration were filtered <i>in situ</i> through a 0.45 µm sterile cellulose acetate membrane syringe filter into their respective laboratory provided sample bottles. Each syringe was pre-rinsed in site water and filters were pre-packaged from the supplier.
	To extend chlorophyll <i>a</i> holding time, samples were filtered within 24 h of collection and filters were stored frozen.
	Sample bottles were stored cool prior to being sent for analysis at the NATA accredited National Measurement Institute (NMI), Australian Laboratory Services (ALS) and Queensland Health (QH) within recommended holding periods and using appropriate Chain of Custody procedures.
	The following analyses were undertaken during each survey:
	Total Suspended Solids (TSS) Total subringer and shearberup)
	 Total nutrients (nitrogen and phosphorus) Dissolved nutrients (ammonia, nitrogen oxides [NOx], and filterable reactive phosphorus [FRP])
Sample	 Chlorophyll a
Analysis	 Dissolved and total metal(loid)s (aluminium, arsenic, cadmium, chromium, cobalt, copper, gallium, iron, lead, manganese, mercury, molybdenum, nickel, silver, tin, vanadium and zinc
	 Total organic carbon (TOC) and dissolved organic carbon (DOC) Laboratory reports are attached to the end of this report.
	A field replicate was collected at one site during each survey, with a Field Blank (FB) for testing potential contamination from field procedures and/or sample bottles also collected.
	Laboratory QA measures include:
Quality Assurance (QA)	Laboratory duplicates
	Method Blanks
	Laboratory Control samples
	 Matrix Spike samples Results of the QA/QC program are presented in the Appendix.
	Site and survey means and standard errors were tabulated and plotted.
	Two-way analyses of variance (ANOVA) and post-hoc tests were
Data Analysis	undertaken to determine whether there were any significant statistical differences in parameters between zones (including PCIMP zones) or across the 2024 surveys.

Activity	Description
	Results were compared to local WQO for the Fitzroy Basin (PoR1) and Curtis Island Basin coastal waters (PoR2 and PoR3), and the appropriate zones for the PCIMP sites (EHP 2013, 2014).
Water Quality Objectives (WQO)	Of note, PCIMP zones Narrows, Colosseum Inlet and Rodds Bay have been classified as slightly disturbed while PoR and Western Basin sites are located in areas considered moderately disturbed. As such, the 95% species protection Australian WQG trigger value was applicable to the PoR and Western Basin sites, while the 99% AWQG was applicable at the other sites (ANZG 2018, 2021)

3 RESULTS & DISCUSSION

3.1 Metocean Conditions

Table 1 outlines the climatic conditions experienced immediately prior to, and during, each water quality survey at the PoR sites, with 2024 rainfall, wind, Fitzroy and Calliope River flow and lunar phases patterns illustrated in Figure 4.

Table 1 Summary of ambient conditions during water sampling undertaken in 2024. Rainfall includes amount recorded during the sampling day and one week prior at each site. Wind refers to the maximum wind gusts recorded during the sample day as recorded at the Rockhampton Aero Station 039083 (BOM 2025). Fitzroy (130005A) and Calliope flow (132001A) refers to the flow rate recorded on the day of PoR sampling (DNRM 2025a, b).

2024 Survey dates	Rainfall (mm)	Wind & direction (km/h)	Fitzroy flow (m³/s)	Calliope flow (m³/s)	Tides
25 Mar	6	30 ESE	19	<0.01	Spring tide, full moon on 25 March. Tidal range = 4.03 m
12 Jun	0	35 SW	0.5	<0.01	Neap tide, 2 days before first quarter moon on 14 June. Tidal range = 2.67 m
20 Aug	87	28 NE	69	1.4	Spring tide with full moon on 20 August. Tidal range = 5.22 m
1 Nov	1	35 NNE	<0.1	0.03	Spring tide, new moon on 1 November. Tidal range = 4.05 m

During 2024, approximately 740 mm of rainfall was recorded at Rockhampton Airport BOM station (039083), slightly lower than the average annual rainfall of 799 mm recorded from 1939 to 2024 (BOM 2025). Rainfall was lower during the Dry Season months (May to October: 284 mm) than during the Wet Season months (January to April, November to December: 456 mm). The highest monthly rainfall was recorded during August (166 mm) and April (158 mm), with lowest rainfall in September (5 mm) and July (8 mm).

High flows (> 75.9 m³/s as per DSITI (2017)) from the Fitzroy River were recorded during January, February, March, April and August with maximum flow of 814 m³/s recorded on 6 February (DNRM 2025b). Baseflow WQO were applicable to all PoR sampling surveys.

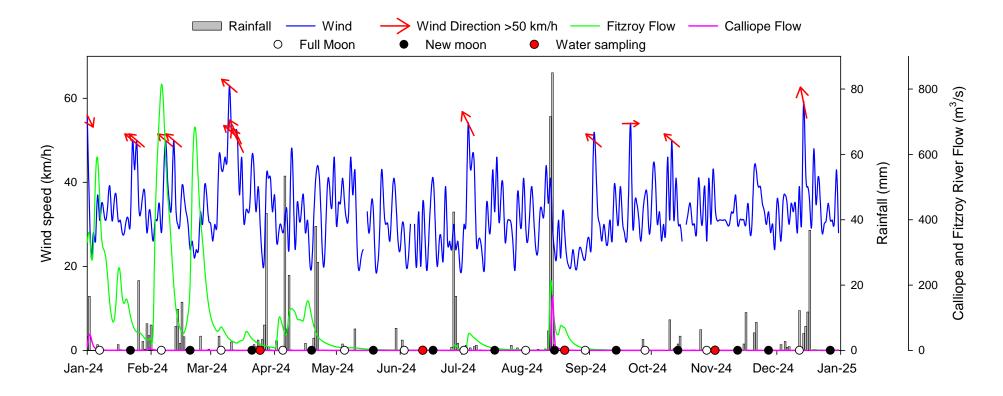
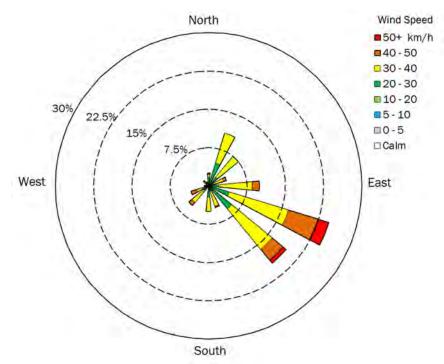



Figure 4 Rockhampton rainfall, wind, Fitzroy River flow (station 130005A), Calliope River flow (station132001A) and lunar phases during 2024 in relation to sampling events. Note that the wind direction is pointing in the direction that the wind is blowing towards.

Flows from the Calliope River increased after rainfall periods during 2024 (DNRM 2025a) but remained at Baseflow conditions (< 100 m³/s) during the entirety of 2024, apart from 14 August (168 m³/s) during the August rainfall event. As the flows were between 100 and 500 m³/s on this date, event flow WQO were applicable for nutrients and chlorophyll *a* concentrations in the Narrows for a two week period (EHP 2014), which included the August water quality survey. However, EHP (2014) do not provide numeric values for event flow nutrient and chlorophyll a WQO.

As typically found, winds at Rockhampton during 2024 were primarily blowing from a southeasterly direction (Figure 5). Approximately 4% of maximum wind gusts were > 50 km/h (BOM 2025).

Figure 5 Windrose of daily maximum wind gusts at Rockhampton Airport Station during 2024. Data sources from BOM. Note that the windrose displays the proportion of wind speeds (varying colours) blowing from various directions.

PoR water quality sampling surveys were generally undertaken during, or immediately post, spring tides, except for June which occurred during neap tides. Sampling was conducted at high tide during all surveys with highest tidal range during the surveys ranging from 2.67 m in June to 5.22 m in August (Table 1).

3.2 Physicochemical Parameters

3.2.1 PoR

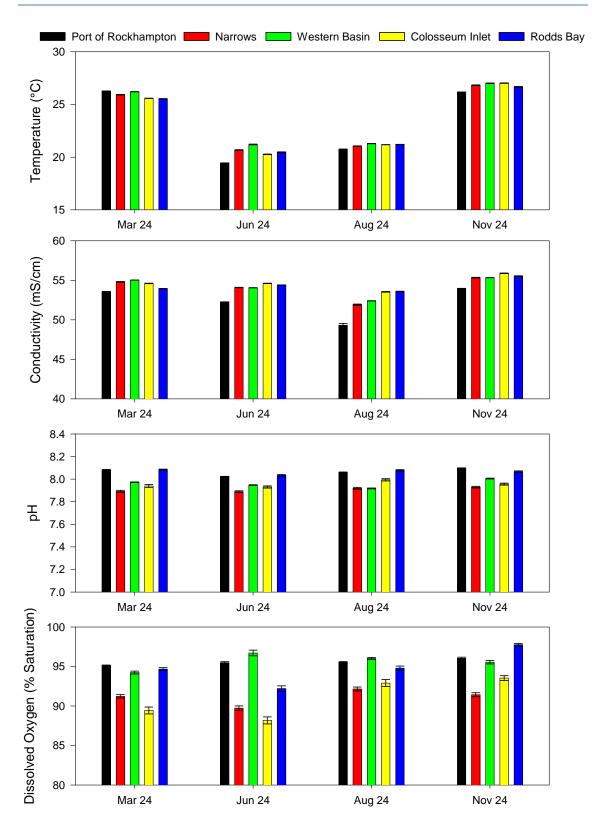

Sub-surface (0.5 m depth) means for each physicochemical parameter at PoR sites across the four surveys are exhibited in Table 2, while physicochemical depth-profiles can be found in the Appendix (Figure A1). The results, in addition to concurrent PCIMP results at adjacent (Narrows and Western Basin) and Reference (Colosseum Inlet and Rodds Bay) zones, are presented in Figures 6 and 7, as well as Table A2 within the Appendix. Two-way ANOVA results can also be found in the Appendix (Table A5).

Table 2 Mean sub-surface physicochemical parameters at PoR sites during 2024 surveys. Values are means \pm se (n = 3 - 6, TSS n = 1). 20th to 80th WQO percentile ranges listed for pH and DO, with two 80th percentile trigger value for turbidity listed: Wet Season (March and November) and Dry Season (June and August). Blue shading indicates values outside of the WQO recommended range (DSITI 2017). *QWQG value used for comparison for TSS (DERM 2009).

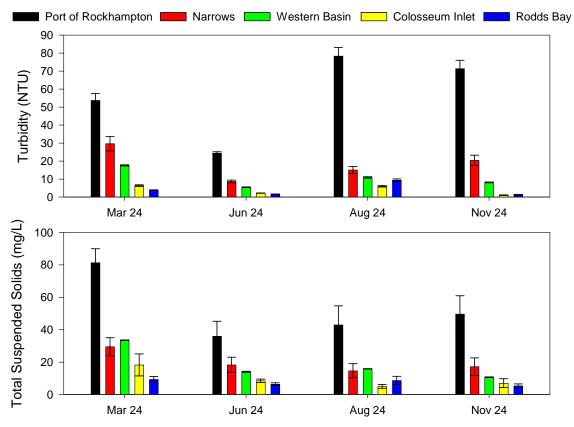

Parameter	March 2024			June 2024			August 2024			No	20 th to 80 th		
	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	WQO
Temperature (°C)	26.2 ± 0.0	26.3 ± 0.0	26.2 ± 0.0	19.3 ± 0.0	19.5 ± 0.0	19.5 ± 0.0	20.9 ± 0.0	20.7 ± 0.0	20.8 ± 0.1	26.3 ± 0.0	26.3 ± 0.0	26.3 ± 0.0	-
Conductivity (mS/cm)	52.5 ± 0.0	53.9 ± 0.0	53.6 ± 0.0	52.1 ± 0.0	52.4 ± 0.0	52.1 ± 0.0	47.8 ± 0.0	50.5 ± 0.0	46.2 ± 0.5	53.8 ± 0.0	54.0 ± 0.0	54.1 ± 0.0	-
рН	8.0 ± 0.0	8.1 ± 0.0	8.1 ± 0.0	8.0 ± 0.0	8.0 ± 0.0	8.1 ± 0.0	8.0 ± 0.0	8.1 ± 0.0	8.1 ± 0.0	8.1 ± 0.0	8.1 ± 0.0	8.1 ± 0.0	7.2 - 8.3
Dissolved oxygen (% sat.)	94 ± 0	95 ± 0	96 ± 0	94 ± 0	96 ± 0	98 ± 0	95 ± 0	96 ± 0	96 ± 0	96 ± 0	96 ± 0	98 ± 0	87 - 95
Turbidity (NTU)	42 ± 1	41 ± 0	27 ± 1	18 ± 2	14 ± 0	30 ± 1	54 ± 5	67 ± 9	25 ± 3	55 ± 14	52 ± 1	19 ± 0	W = 30 D = 12
TSS (mg/L)	80	97	67	36	20	52	65	39	25	55	66	28	20*

Figure 6 Temperature, conductivity, pH and dissolved oxygen at PoR, and adjacent and reference PCIMP zones during each survey. *Values are means* \pm *se* (*n* = 62 to 142).

Figure 7 Turbidity and total suspended solids at PoR, and adjacent and reference PCIMP zones during each survey. *Values are means* \pm *se* (*n* = 3 to 142).

Sub-surface physicochemical parameters were similar across the PoR sites within each survey but often varied across the surveys. Typical seasonality was exhibited, with higher temperatures during the Wet Season surveys of March and November (26.3 and 26.2 °C, respectively) and lower temperatures (19.5 and 20.8 °C) during the Dry Season surveys of June and August (Table 2). Sub-surface pH remained consistent throughout the year ranging from 8.0 to 8.1 and within the recommended QWQG range of 7.2 to 8.3 (Table 2).

Conductivity was lower during August (~ 49 mS/cm) than during the other 2024 surveys (52 to 54 mS/cm), likely due to the higher rainfall recorded in the week prior to the August survey, which contributed freshwater to the water column. Dissolved oxygen ranged from ranged from 94 to 98% saturation across the surveys, with most values higher than the 80th percentile WQO of 95%, indicating well-oxygenated waters.

Sub-surface turbidity varied across the sites during each survey, with no consistent spatial pattern evident. Exceedances of the 80th percentile WQO were evident at each site during all surveys, except for PoR3 in March and November. TSS results paralleled turbidity results, ranging from 20 to 97 mg/L, with all concentrations equal to or exceeding the QWQG of 20 mg/L. Overall, turbidity and TSS were lowest during June survey, which was carried out during a neap tide period.

Within the water column, parameters generally remained consistent with depth (Figure A1 in Appendix). Dissolved oxygen occasionally decreased slightly with depth, due to reduced

photosynthetic activity in the reduced light environment of deeper waters, while turbidity often increased near the benthos due to sediment resuspension.

3.2.2 Comparison with PCIMP Results

PoR physicochemical parameters were compared to the adjacent PCIMP monitoring zones of the Narrows and Western Basin, as well as the PCIMP reference zones of Colosseum Inlet and Rodds Bay (Figures 6 and 7). Of note:

- Temperatures at PoR (annual mean of 23.1°C) was significantly (P < 0.05) lower than all other zones (23.4 to 24.3°C).
- Conductivity at PoR (52.4 mS/cm) was significantly (P < 0.05) lower than all other zones (54.1 to 54.7 mS/cm).
- The pH at PoR (8.1) was similar to Rodds Bay, both of which were significantly (P < 0.05) higher than the Narrows, Western Basin and Colosseum Inlet (8.0).
- Dissolved oxygen at PoR (96% saturation) was similar to Western Basin, both of which were significantly (P < 0.05) higher than Rodds Bay, Narrows and Colosseum Inlet (91 to 95% saturation).
- Turbidity and TSS at PoR (54 NTU and 53 mg/L) were significantly higher than all other zones (4 to 19 NTU, and 7 to 20 mg/L, respectively).

3.3 Chlorophyll a and Nutrients

3.3.1 PoR

Tabulated nutrient and chlorophyll *a* results for 2024 can be found in Table 3. The results, in addition to concurrent PCIMP sampling at adjacent and reference zones, are presented in Figures 8 and 9, and Table A3 within the Appendix. Two-way ANOVA results can also be found in the Appendix (Table A5).

Several nutrients (particularly total phosphorus and nitrogen) were lower during the June survey, corresponding to when turbidity and TSS were also at their lowest. This may indicate contribution of nutrients to the water column via nutrient fluxing from benthic sediment resuspension as found in other estuaries (Prastka et al. 1998, McKee et al. 2000). Exceedances of the WQO for total phosphorus and nitrogen occurred frequently.

Exceedances of WQO were also recorded for the readily bioavailable nutrient forms of FRP and NOx in each sample. In contrast, WQO exceedances for chlorophyll *a* and ammonia occurred infrequently, and only during Wet Seasons surveys. Highest concentrations of both TOC and DOC were recorded in August.

3.3.2 Comparison with PCIMP Results

Of note across the zones:

- Total phosphorus and FRP at PoR (annual means of 45 μ g/L and 13 μ g/L) were significantly (P < 0.05) higher than all other zones (8 to 18 μ g/L, and <2 to 4 μ g/L, respectively).
- Total nitrogen and NOx at PoR (233 μg/L and 32 μg/L) were significantly (P < 0.05) higher than all other zones (135 to 172 μg/L, and 2.4 to 10 μg/L, respectively).

Table 3 Chlorophyll *a* and nutrient concentrations at PoR during 2024 surveys. N = 1. Highlighted values indicates exceedances of the 80th percentile WQO value (DSITI 2017). FRP = filterable reactive phosphorus, NOx = nitrogen oxides, TOC = total organic carbon and DOC = dissolved organic carbon.

	March 2024				June 2024			August 2024			November 2024		
Parameter (µg/L)	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	- WQO
Total Phosphorus	55	44	40	36	28	42	66	64	46	44	50	30	29
FRP	16	8	10	14	11	11	18	11	20	12	10	9	7
Total Nitrogen	310	230	250	200	180	220	290	240	260	210	240	170	220
Ammonia	14	11	10	<2	<2	2	10	10	7	11	8	<2	10
NOx	44	24	45	30	22	23	48	32	59	18	20	20	9
Chlorophyll a	3.0	1.3	1	1.8	1.2	2.0	1.2	1.9	1.0	2.4	1.1	1.8	2
TOC (mg/L)	2.0	2.0	2.0	2.0	1.0	2.0	3.0	2.0	2.0	2.0	2.0	1.0	-
DOC (mg/L)	1.2	1.1	1.0	1.2	1.1	1.2	1.7	1.2	1.9	1.2	0.9	1.3	-

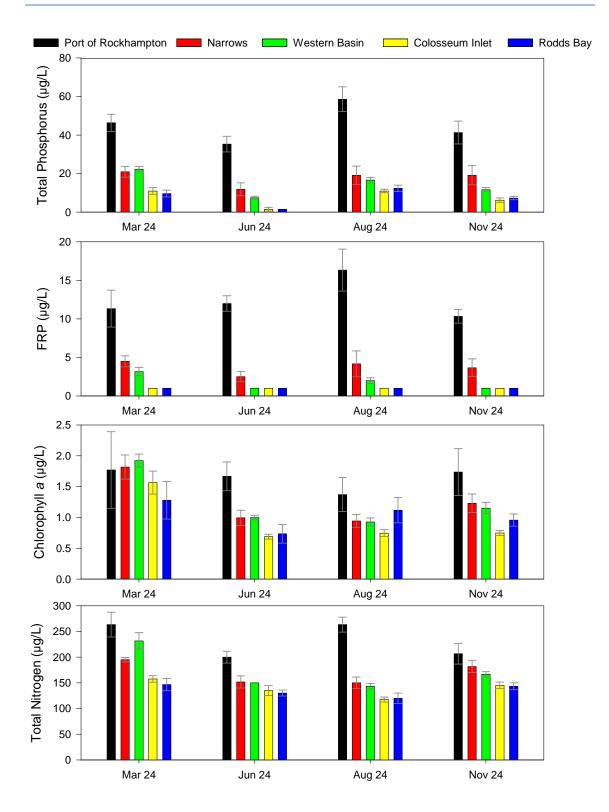


Figure 8 Total phosphorus, FRP, chlorophyll *a* and total nitrogen concentrations at PoR, and adjacent and reference PCIMP zones during each survey.

Values are means \pm se (n = 3 to 6). For concentrations below Limit of Reporting (LOR), half the LOR was used in the plots.

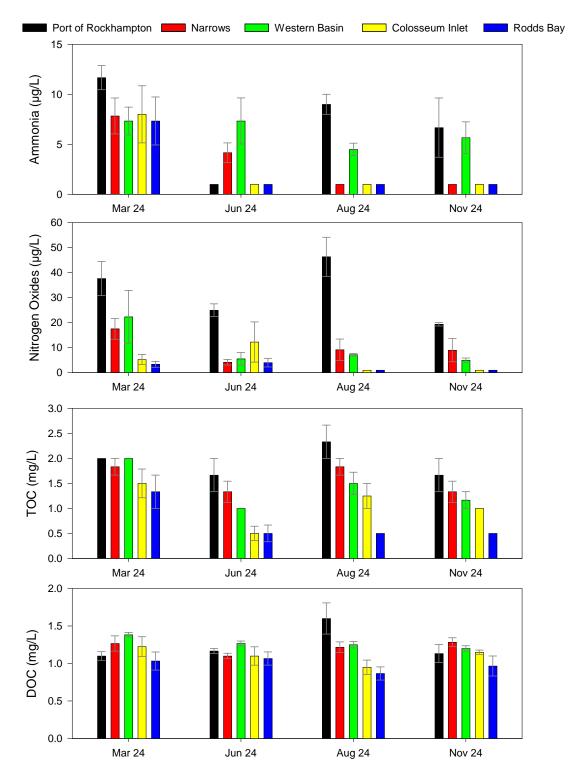


Figure 9 Mean ammonia, NOx, TOC and DOC concentrations at PoR, and adjacent and reference PCIMP zones during each survey.

Values are means \pm se (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.

- Ammonia concentrations at PoR (7 μg/L) were similar to Western Basin (6 μg/L), both of which were significantly (P < 0.05) higher than the Narrows, Colosseum Inlet and Rodds Bay (3 to 4 μg/L).
- PoR TOC concentrations (1.9 mg/L) were significantly (P < 0.05) higher than all other zones (1.0 to 1.6 mg/L).
- PoR DOC concentrations at PoR were similar to the Narrows and Western Basin (1.2 to 1.3 mg/L).
- PoR chlorophyll a concentrations (1.6 mg/L) were significantly (P < 0.05) higher than all other zones (0.9 to 1.2 mg/L).

Higher nutrients at PoR in comparison with Port Curtis have been recorded during multiple years of monitoring (Vision Environment 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024). It is likely that the elevated nutrients in PoR in comparison to Port of Gladstone (PoG) are a result of differing anthropogenic activities (farming in comparison to industrial) between the two areas, in addition to the high level of nutrient fluxing from the sediments to the water column.

3.4 Total and Dissolved Metal(loid)s

3.4.1 PoR

Total and dissolved metal(loid) concentrations recorded at PoR during 2024 are listed in Table 4. These results, in addition to concurrent PCIMP sampling results at adjacent and reference zones, are presented in Figures 10 to 14, and Table A4 within the Appendix. Two-way ANOVA results can be found in the Appendix (Table A5).

Many metal(loid)s were at or below laboratory limits of reporting (LOR), including total and dissolved cadmium, mercury, silver and tin. Dissolved chromium, cobalt, copper, gallium, lead, manganese and nickel were also below LOR, but total forms were detected.

Similar to several nutrients, concentrations of total aluminium, arsenic, chromium, iron, manganese, nickel and vanadium were lower during the June survey, corresponding with the lower turbidity and TSS concentrations. Metal(loid) ions will preferentially bind to suspended small particles and organic matter that contain a large surface charge and numerous binding sites (Simpson et al. 2005, Simpson et al. 2013).

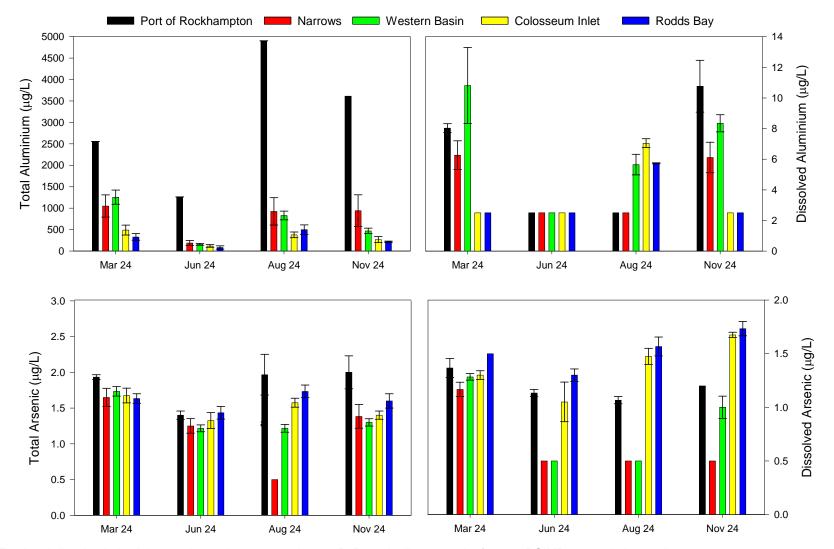
No metal(loid)s exceeded their respective 95% AWQG at PoR during 2024.

3.4.2 Comparison with PCIMP Results

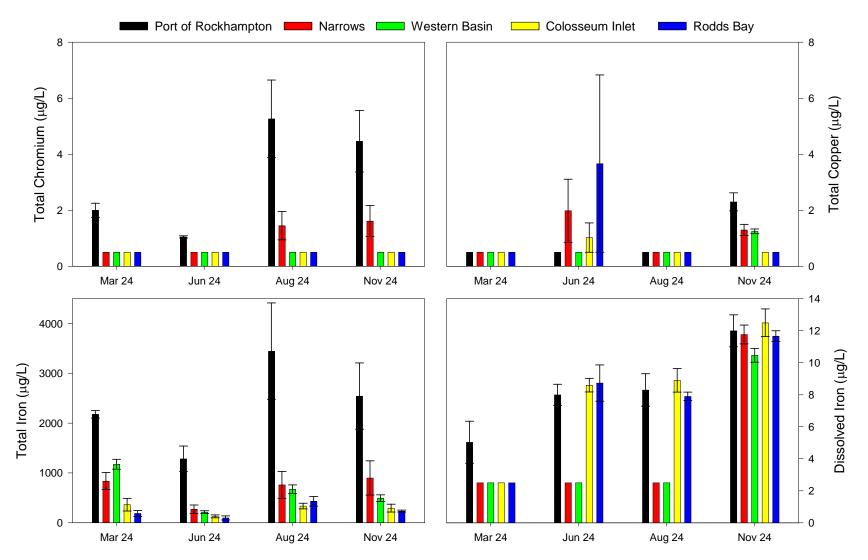
Of note across the zones

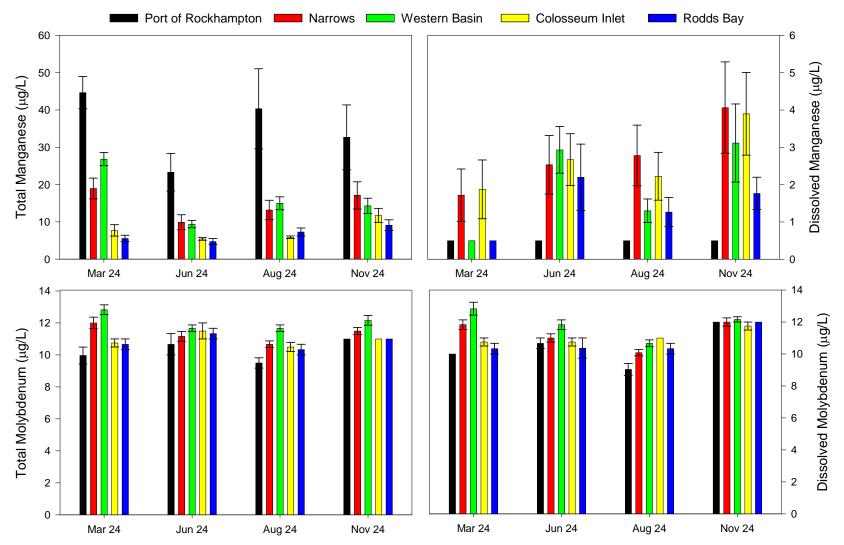
- Concentrations of total aluminium (annual mean of 3083 μ g/L), arsenic (1.8 μ g/L), chromium (12 μ g/L), iron (2362 μ g/L), manganese (35 μ g/L), nickel (2.5 μ g/L) and vanadium (5.7 μ g/L) were significantly (P < 0.05) higher at PoR than at the other zones.
- Total molybdenum (10 µg/L) was significantly (P < 0.05) lower at PoR than at the PCIMP zones (11 to 12 µg/L)

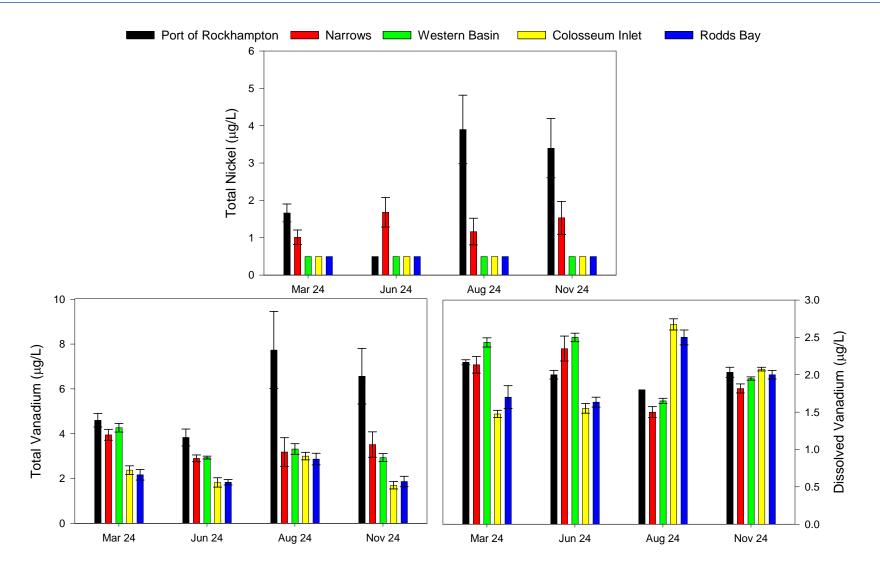
Higher total metal(loid)s at PoR in comparison with Port Curtis has been recorded during multiple years of monitoring (Vision Environment 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024). It is likely that the higher concentration of suspended particles within the water at PoR results in the high level of total metal(loid)s. Dissolved metal(loid) forms were generally similar across PoR and Port Curtis.


Table 4 Total and dissolved metal concentrations at PoR during 2024 surveys.N = 1. Blue shading indicates exceedances of the 95% species protection AWQG value which is applicable to PoR sites. Note that speciation measures have
not been carried out on chromium, and thus these forms (Cr(III) and Cr(VI)) could potentially contribute to total concentrations.

	<i>a</i> ,	M	arch 202	24	J	une 202	4	A	ugust 20	24	Nov	ember 2	2024	
Metal (µg/L)	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	95% AWQG
	Dissolved	7.5	8.5	8.1	<5	<5	<5	<5	<5	<5	10	14	8.3	24
Aluminium	Total	2800	2200	2660	1840	950	1000	6300	6280	2130	3930	5000	1910	-
Aroonio	Dissolved	1.2	1.4	1.5	1.1	1.1	1.2	1	1.1	1.1	1.2	1.2	1.2	-
Arsenic	Total	1.9	2	1.9	1.4	1.3	1.5	2.2	2.3	1.4	2	2.4	1.6	-
Cadmium	Dissolved	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5.5
Cadmium	Total	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	Cr (III) 27.4 Cr (VI) 4.4
Chromium	Total	2.5	1.7	1.8	1.1	<1	1	6.8	6.5	2.5	4.6	6.3	2.5	-
Oahalt	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1
Cobalt	Total	<1	<1	<1	<1	<1	<1	1.5	1.4	<1	<1	1.3	<1	-
0	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.3
Copper	Total	<1	<1	<1	<1	<1	<1	<1	<1	<1	2.4	2.8	1.7	-
0	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Gallium	Total	<1	<1	<1	<1	<1	<1	1.5	1.6	<1	<1	1	<1	-
l	Dissolved	6.9	<5	5.7	8.8	6.7	8.5	9.6	9	6.3	11	14	11	-
Iron	Total	2300	2040	2190	1630	780	1440	4450	4380	1510	2650	3640	1340	-
Leed	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	4.4
Lead	Total	<1	<1	<1	<1	<1	<1	1.2	1.3	<1	<1	1.1	<1	-
N4	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-
Manganese	Total	52	45	37	21	16	33	53	49	19	34	47	17	-


		M	arch 202	24	J	lune 202	4	Αι	ugust 20	24	November 2024		2024	95% AWQG	
Metal (j	ug/L)	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	PoR1	PoR2	PoR3	95% AWQG	
	Dissolved	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.4	
Mercury	Total	<0.1	<0.1	<0.1	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	-	
	Dissolved	10	10	10	10	11	11	9	9.7	8.4	12	12	12	-	
Molybdenum	Total	9.3	9.6	11	10	10	12	9.6	10	8.9	11	11	11	-	
Nister	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	70	
Nickel	Total	1.8	1.2	2	1.5	<1	1	5.1	4.5	2.1	3.7	4.6	1.9	-	
Cilver	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	1.4	
Silver	Total	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	
T ' -	Dissolved	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	
Tin	Total	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	
	Dissolved	2.1	2.2	2.2	2	2.1	1.9	1.8	1.8	1.8	2.1	1.9	2.1	100	
Vanadium	Total	4.9	4	4.9	3.8	3.2	4.5	9.7	9.2	4.3	7.1	8.4	4.2	-	
7:	Dissolved	<1	<1	<1	<1	<1	<1	1.4	1.6	3.1	2.8	2	7.6	8	
Zinc	Total	<1	<1	<1	6.9	6.2	5.5	6.2	6.5	2.4	6.3	7.5	4.1	-	


Figure 10 Total and dissolved aluminium and arsenic concentrations at PoR, and adjacent and reference PCIMP zones during each survey. Values are means \pm se (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.


Figure 11 Total chromium and copper and total and dissolved iron concentrations at PoR, and adjacent and reference PCIMP zones during each survey. *Values are means* \pm *se* (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.

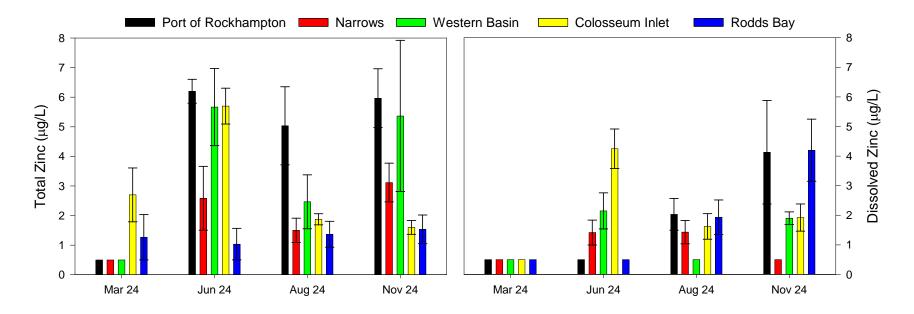

Figure 12 Total and dissolved manganese and molybdenum concentrations at PoR, and adjacent and reference PCIMP zones during each survey. Values are means \pm se (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.

Figure 13 Total and dissolved molybdenum and nickel concentrations at PoR, and adjacent and reference PCIMP zones during each survey. Values are means \pm se (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.

Figure 14 Total and dissolved zinc at PoR, and adjacent and reference PCIMP zones during each survey. Values are means \pm se (n = 3 to 6). For concentrations below LOR, half the LOR is displayed in the plots.

4 REFERENCES

ANZG. 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, Australia.

ANZG. 2021. Toxicant default guideline values for aquatic ecosystem protection: Zinc in marine water. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra, Australia.

APHA. 2017. Standard Methods for the Examination of Water and Wastewater. 21st edition. American Public Health Association, Washington, USA.

AS/NZS. 1998a. 5667.1:1998 Water Quality - Sampling. Part 1: Guidance on the design of sampling programs, sampling techniques and the preservation and handling of samples. Joint Standards Australia/Standards New Zealand, Canberra, Australia.

AS/NZS. 1998b. 5667.4:1998 Water Quality - Sampling. Part 4: Guidance on sampling from lakes, natural and man-made. Joint Standards Australia/Standards New Zealand, Canberra, Australia.

AS/NZS. 1998c. 5667.6:1998 Water Quality - Sampling. Part 6: Guidance on sampling of rivers and streams. Joint Standards Australia/Standards New Zealand, Canberra, Australia.

BOM. 2025. Climate statistics for Australian locations. Bureau of Meterology, Commonwealth of Australia, Canberra, Australia.

DEHP. 2014. Curtis Island, Calliope River and Boyne River Basins Environmental Values and Water Quality Objectives. Department of Environment and Heritage Protection, Brisbane, Australia.

DERM. 2009. Queensland Water Quality Guidelines, Version 3. ISBN 978-0-9806986-0-2, Department of Environment and Resource Management, Brisbane, Australia.

DES. 2018. Monitoring and Sampling Manual: Environmental Protection (Water) Policy 2009. Department of Environment and Science, Brisbane, Australia.

DNRM. 2025a. Calliope Basin Streamflow Data. Department of Natural Resources and Mines, Brisbane, Australia.

DNRM. 2025b. Fitzroy Basin Streamflow Data. Department of Natural Resources and Mines.

DSITI. 2017. Draft environmental values and water quality guidelines: Fitzroy Basin fresh, estuarine and marine waters, including Keppel Bay. Department of Science, Information Technology and Innovation, Brisbane, Australia.

EHP. 2013. Fitzroy River Sub-basin Environmental Values and Water Quality Objectives. Department of Environment and Heritage Protection, Brisbane, Australia.

EHP. 2014. Curtis Island, Calliope River and Boyne River Basins Environmental Values and Water Quality Objectives. Department of Environment and Heritage Protection, Brisbane, Australia.

Golding, L. A., B. M. Angel, G. E. Batley, S. C. Apte, R. Krassoi, and C. J. Doyle. 2015. Derivation of a water quality guideline for aluminium in marine waters. Environmental Toxicology and Chemistry **34**:141-151.

GPCL. 2023. Long-term Maintenance Dredging Management Plan for the Port of Rockhampton v5. Gladstone Ports Corporation Limited, Gladstone, Australia.

McKee, L. J., B. D. Eyre, and S. Hossain. 2000. Transport and Retention of Nitrogen and Phosphorus in the Sub-Tropical Richmond River Estuary, Australia: A Budget Approach. Biogeochemistry **50**:241-278.

O'Neill, M. E. 2000. Theory & Methods A Weighted Least Squares Approach to Levene's Test of Homogeneity of Variance. Australian & New Zealand Journal of Statistics **42**:81-100.

Prastka, K., R. Sanders, and T. Jickells. 1998. Has the role of estuaries as sources or sinks of dissolved inorganic phosphorus changed over time? Results of a Kd study. Marine Pollution Bulletin **36**:718-728.

Rajesh, M., and S. Rehana. 2022. Impact of climate change on river water temperature and dissolved oxygen: Indian riverine thermal regimes. Scientific Reports **12**:9222.

Simpson, S. L., G. E. Batley, and A. A. Chariton. 2013. Revision of the ANZECC/ARMCANZ Sediment Quality Guidelines. CSIRO Land and Water, Sydney, Australia.

Simpson, S. L., G. E. Batley, A. A. Chariton, J. L. Stauber, C. K. King, J. C. Chapman, R. V. Hyne, S. A. Glaes, A. C. Roach, and W. A. Maher. 2005. Handbook for Sediment Quality Assessment. CSIRO, Sydney, Australia.

Underwood, A. J. 1997. Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, U.K.

Vision Environment. 2016. Port of Rockhampton and East Banks Disposal Site Water Quality Monitoring - 2015 Annual Report. Gladstone, Australia.

Vision Environment. 2017. Port of Rockhampton and East Banks Disposal Site Water Quality Monitoring - 2016 Annual Report. Gladstone, Australia.

Vision Environment. 2018. Port of Rockhampton and East Banks Disposal Site Water Quality Monitoring - 2017 Annual Report. Gladstone, Australia.

Vision Environment. 2019. Port of Rockhampton and East Banks Disposal Site Water Quality Monitoring - 2018 Annual Report. Gladstone, Australia.

Vision Environment. 2020. Port of Rockhampton Water Quality Monitoring Program - 2019 Annual Report. Gladstone, Australia.

Vision Environment. 2021. Port of Rockhampton Water Quality Monitoring Program - 2020 Annual Report. Gladstone, Australia.

Vision Environment. 2022. Port of Rockhampton Water Quality Monitoring Program - 2021 Annual Report. Gladstone, Australia.

Vision Environment. 2023. Port of Rockhampton Water Quality Monitoring Program - 2022 Annual Report. Gladstone, Australia.

Vision Environment. 2024. Port of Rockhampton Water Quality Monitoring Program - 2023 Annual Report. Gladstone, Australia.



Figure A1 Depth-profiled physicochemical parameters at all Port of Rockhampton sites during 2024.

5.1 QA/QC Summary

Table A1 summarises the quality objectives and their achievement. Definitions and acceptance targets for the laboratory QA measures are detailed in the laboratory reports.

Table A1. Summar	y of proje	ct quality ob	jectives
------------------	------------	---------------	----------

Quality Indicators	Task	Acceptability
	Appropriate sampling methods undertaken	Yes
	Experienced sampling personnel	Yes
	Equipment calibrated	Yes
	Required sites sampled	Yes
Field	Appropriate decontamination procedures	Yes
Field	Collection of field replicate (1 in 10 samples)	Yes
	Collection of Field Blank (FB)	Yes
	Appropriate Documentation	Yes
	FB results < LOR	Ammonia, NOx and dissolved and total zinc were detected in one or more surveys
	Samples analysed at NATA accredited laboratory	Yes
	Samples analysed within holding periods	Yes
Laboratory	Method Blanks < LOR	Yes
	Laboratory duplicate samples within recommended RPD%	Yes
	Laboratory control samples within recommended recovery rates	Yes

Site	Survey	Temperature (°C)	Conductivity (mS/cm)	рН	Turbidity (NTU)	Dissolved oxygen (% sat.)	TSS (mg/L)
	Mar-24	26.3 ± 0.0	53.5 ± 0.1	8.1 ± 0.0	54 ± 4	95 ± 0	81 ± 9
PoR	Jun-24	19.5 ± 0.0	52.3 ± 0.0	8.0 ± 0.0	24 ± 1	96 ± 0	36 ± 9
POR	Aug-24	20.8 ± 0.0	49.3 ± 0.2	8.1 ± 0.0	78 ± 5	96 ± 0	43 ± 12
	Nov-24	26.2 ± 0.0	54.0 ± 0.0	8.1 ± 0.0	71 ± 5	96 ± 0	50 ± 11
V	VQO	-	-	7.2 - 8.3	W = 30, D = 12	87 - 95	20
	Mar-24	25.9 ± 0.0	54.8 ± 0.0	7.9 ± 0.0	30 ± 4	91 ± 0	30 ± 6
NW	Jun-24	20.7 ± 0.0	54.1 ± 0.0	7.9 ± 0.0	9 ± 1	90 ± 0	18 ± 5
INVV	Aug-24	21.1 ± 0.0	51.9 ± 0.1	7.9 ± 0.0	15 ± 2	92 ± 0	15 ± 4
	Nov-24	26.8 ± 0.0	55.4 ± 0.0	7.9 ± 0.0	20 ± 3	91 ± 0	17 ± 5
V	VQO	-	-	7.4 - 8.3	W = 30, D = 12	87 - 95	20
	Mar-24	26.2 ± 0.0	55.0 ± 0.0	8.0 ± 0.0	18 ± 0	94 ± 0	34 ± 3
	Jun-24	21.2 ± 0.0	54.1 ± 0.0	7.9 ± 0.0	6 ± 0	97 ± 0	14 ± 2
WB	Aug-24	21.3 ± 0.0	52.4 ± 0.0	7.9 ± 0.0	11 ± 0	96 ± 0	16 ± 2
	Nov-24	27.0 ± 0.0	55.3 ± 0.0	8.0 ± 0.0	8 ± 0	96 ± 0	11 ± 2
۷	VQO	-	-	7.4 - 8.3	W = 29, D = 17	91 - 100	20
	Mar-24	25.6 ± 0.0	54.6 ± 0.0	7.9 ± 0.0	6 ± 1	89 ± 0	18 ± 7
	Jun-24	20.3 ± 0.0	54.6 ± 0.0	7.9 ± 0.0	2 ± 0	88 ± 0	9 ± 1
RCI	Aug-24	21.2 ± 0.0	53.5 ± 0.0	8.0 ± 0.0	6 ± 0	93 ± 0	5 ± 1
	Nov-24	27.0 ± 0.0	55.9 ± 0.0	8.0 ± 0.0	1 ± 0	94 ± 0	7 ± 3
V	VQO	-	-	7.4 - 8.3	W = 14, D = 4	86 - 97	20
	Mar-24	25.5 ± 0.0	53.9 ± 0.0	8.1 ± 0.0	4 ± 0	95 ± 0	9 ± 2
пп	Jun-24	20.5 ± 0.1	54.4 ± 0.0	8.0 ± 0.0	2 ± 0	92 ± 0	6 ± 1
RB	Aug-24	21.2 ± 0.0	53.6 ± 0.0	8.1 ± 0.0	9 ± 1	95 ± 0	9 ± 3
	Nov-24	26.7 ± 0.0	55.5 ± 0.1	8.1 ± 0.0	1 ± 0	98 ± 0	5 ± 1
V	VQO	-	-	7.4 - 8.3	W = 12, D = 7	93 - 98	20

Table A2 Whole water column physicochemical parameters and TSS at PoR, and adjacent and reference PCIMP zones during 2024 surveys. Values are means \pm se (n = 3 to 160). 20th to 80th WQO ranges for pH and DO, Wet and Dry Season 80th percentile trigger value for turbidity. No WQO are available for TSS, so QWQG used (DERM 2009). Values exceeding WQO or QWQG are highlighted.

Site	Survey	Chlorophyll <i>a</i> (µg/L)	Phosphorous (µg/L)	FRP (µg/L)	Nitrogen (µg/L)	Ammonia (µg/L)	NOx (µg/L)	TOC (mg/L)	DOC (mg/L)
	Mar-24	1.8 ± 0.6	46 ± 4	11 ± 2	263 ± 24	12 ± 1	38 ± 7	2.0 ± 0.0	1.1 ± 0.1
	Jun-24	1.7 ± 0.2	35 ± 4	12 ± 1	200 ± 12	<2	25 ± 3	1.7 ± 0.3	1.2 ± 0.0
PoR	Aug-24	1.4 ± 0.3	59 ± 6	16 ± 3	263 ± 15	9 ± 1	46 ± 8	2.3 ± 0.3	1.6 ± 0.2
	Nov-24	1.7 ± 0.4	41 ± 6	10 ± 1	207 ± 20	7 ± 3	19 ± 1	1.7 ± 0.3	1.1 ± 0.1
V	VQG	2.0	29	7	220	10	9	-	-
	Mar-24	1.8 ± 0.2	21 ± 3	5 ± 1	195 ± 4	8 ± 2	18 ± 4	1.8 ± 0.2	1.3 ± 0.1
NW	Jun-24	1.0 ± 0.1	12 ± 3	3 ± 1	152 ± 12	4 ± 1	4 ± 1	1.3 ± 0.2	1.1 ± 0.0
INVV	Aug-24	0.9 ± 0.1	19 ± 5	4 ± 2	150 ± 11	<2	9 ± 4	1.8 ± 0.2	1.2 ± 0.1
	Nov-24	1.2 ± 0.1	19 ± 5	4 ± 1	182 ± 11	<2	9 ± 5	1.3 ± 0.2	1.3 ± 0.1
V	/QG	2.0	29	7	220	10	9	-	-
	Mar-24	1.9 ± 0.1	22 ± 1	3 ± 1	232 ± 16	7 ± 1	22 ± 11	2.0 ± 0.0	1.4 ± 0.0
W/D	Jun-24	1.0 ± 0.0	8 ± 1	<2	150 ± 0	7 ± 2	6 ± 3	1.0 ± 0.0	1.3 ± 0.0
WD	Aug-24	0.9 ± 0.1	17 ± 2	2 ± 0	143 ± 6	5 ± 1	7 ± 1	1.5 ± 0.2	1.3 ± 0.0
WB	Nov-24	1.2 ± 0.1	12 ± 1	<2	167 ± 5	6 ± 2	5 ± 1	1.2 ± 0.2	1.2 ± 0.0
V	VQG	2.0	29	7	210	8	16	-	-
	Mar-24	1.6 ± 0.2	11 ± 2	<2	158 ± 6	8 ± 3	5 ± 2	1.5 ± 0.3	1.2 ± 0.1
RCI	Jun-24	0.7 ± 0.0	<3	<2	135 ± 10	<2	12 ± 8	0.8 ± 0.1	1.1 ± 0.1
NO1	Aug-24	0.7 ± 0.1	11 ± 1	<2	118 ± 5	<2	<2	1.3 ± 0.3	1.0 ± 0.1
	Nov-24	0.7 ± 0.0	6 ± 1	<2	145 ± 6	<2	<2	1.0 ± 0.0	1.2 ± 0.0
V	VQG	1.4	15	3	180	15	5	-	
	Mar-24	1.3 ± 0.3	10 ± 2	<2	147 ± 12	7 ± 2	3 ± 1	1.3 ± 0.3	1.0 ± 0.1
RB	Jun-24	0.7 ± 0.2	<3	<2	130 ± 6	<2	4 ± 2	0.8 ± 0.2	1.1 ± 0.1
	Aug-24	1.1 ± 0.2	12 ± 2	<2	120 ± 10	<2	<2	0.5 ± 0.0	0.9 ± 0.1
	Nov-24	1.0 ± 0.1	7 ± 1	<2	143 ± 7	<2	<2	0.5 ± 0.0	1.0 ± 0.1
V	VQG	2.2	21	3	200	4	3	-	-

Table A3 Chlorophyll *a* and nutrient concentrations at PoR, and adjacent and reference PCIMP zones during 2024 surveys. Values are means \pm se (n = 3 to 6). Highlight values indicates exceedances of the 80th percentile WQO value (DEHP 2014, DSITI 2017).

Site	Survey	Alumini	um (µg/L)	Arsenic	(µg/L)	Cadmium	(µg/L)	Chromiur	n (µg/L)	Cobalt	(µg/L)	Copper	(µg/L)
Sile	Survey	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Total
	Mar-24	8 ± 0	2553 ± 181	1.4 ± 0.1	1.9 ± 0.0	<0.1	<0.1	<1	2.0 ± 0.3	<1	<1	<1	<1
PoR	Jun-24	<5	1263 ± 289	1.1 ± 0.0	1.4 ± 0.1	<0.1	<0.1	<1	1.1 ± 0.0	<1	<1	<1	<1
FOR	Aug-24	<5	4903 ± 1387	1.1 ± 0.0	2.0 ± 0.3	<0.1	<0.1	<1	5.3 ± 1.4	<1	1.1 ± 0.3	<1	<1
	Nov-24	11 ± 2	3613 ± 906	1.2 ± 0.0	2.0 ± 0.2	<0.1	<0.1	<1	4.5 ± 1.1	<1	<1	<1	2.3 ± 0.3
	Mar-24	6 ± 1	1052 ± 260	1.2 ± 0.1	1.7 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
NW	Jun-24	<5	190 ± 58	<1	1.3 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	2.0 ± 1.1
IN VV	Aug-24	<5	927 ± 319	<1	<1	<0.1	<0.1	<1	1.5 ± 0.5	<1	<1	<1	<1
	Nov-24	6 ± 1	943 ± 369	<1	1.4 ± 0.2	<0.1	<0.1	<1	1.6 ± 0.6	<1	<1	<1	1.3 ± 0.2
	Mar-24	11 ± 2	1257 ± 165	1.3 ± 0.0	1.7 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
WB	Jun-24	<5	157 ± 22	<1	1.2 ± 0.0	<0.1	<0.1	<1	<1	<1	<1	<1	<1
WD	Aug-24	6 ± 1	830 ± 102	<1	1.2 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	Nov-24	8 ± 1	472 ± 62	1.0 ± 0.1	1.3 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	1.3 ± 0.1
	Mar-24	<5	490 ± 115	1.3 ± 0.0	1.7 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
RCI	Jun-24	<5	119 ± 31	1.1 ± 0.2	1.3 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	1.0 ± 0.5
RUI	Aug-24	7 ± 0	380 ± 66	1.5 ± 0.1	1.6 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	Nov-24	<5	268 ± 70	1.7 ± 0.0	1.4 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	Mar-24	<5	330 ± 78	1.5 ± 0.0	1.6 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
RB	Jun-24	<5	84 ± 38	1.3 ± 0.1	1.4 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	3.7 ± 3.2
КĎ	Aug-24	6 ± 0	500 ± 111	1.6 ± 0.1	1.7 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
	Nov-24	<5	217 ± 17	1.7 ± 0.1	1.6 ± 0.1	<0.1	<0.1	<1	<1	<1	<1	<1	<1
95%	AWQG	:	24	-		5.5		Cr(III) 27.4,	Cr(VI) 4.4	1		1.3	3
99%	AWQG	2	2.1	-		0.7		Cr(III) 7.7, 0	Cr(VI) 0.14	0.00	05	0.3	3

Table A4 Total and dissolved metal concentrations at PoR, and adjacent and reference PCIMP zones during 2024 surveys. Values are means \pm se (n = 3 to 6). Note the 99% AWQG applicable to Narrows, Colosseum Inlet and Rodds Bay (DEHP 2014). AWQG applicable to dissolved metal concentrations only. Values exceeding AWQG are highlighted.

Cito	Currier	Gallium	ι (μg/L)	Iron	(µg/L)	Lead (ug/L)	Manganes	e (µg/L)	Mercur	/ (µg/L)
Site	Survey	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
	Mar-24	<1	<1	5 ± 1	2177 ± 75	<1	<1	<1	45 ± 4	<0.05	<0.05
PoR	Jun-24	<1	<1	8 ± 1	1283 ± 258	<1	<1	<1	23 ± 5	<0.05	<0.05
FOR	Aug-24	<1	1.2 ± 0.4	8 ± 1	3447 ± 969	<1	<1	<1	40 ± 11	<0.05	<0.05
	Nov-24	<1	<1	12 ± 1	2543 ± 666	<1	<1	<1	33 ± 9	<0.05	<0.05
	Mar-24	<1	<1	<5	837 ± 172	<1	<1	2 ± 1	19 ± 3	<0.05	<0.05
N114/	Jun-24	<1	<1	<5	270 ± 85	<1	<1	3 ± 1	10 ± 2	<0.05	<0.05
NW	Aug-24	<1	<1	<5	760 ± 271	<1	<1	3 ± 1	13 ± 3	<0.05	<0.05
	Nov-24	<1	<1	12 ± 1	898 ± 345	<1	<1	4 ± 1	17 ± 4	<0.05	<0.05
	Mar-24	<1	<1	<5	1173 ± 100	<1	<1	<1	27 ± 2	<0.05	<0.05
	Jun-24	<1	<1	<5	213 ± 27	<1	<1	3 ± 1	9 ± 1	<0.05	<0.05
WB	Aug-24	<1	<1	<5	672 ± 87	<1	<1	1 ± 0	15 ± 2	<0.05	<0.05
	Nov-24	<1	<1	10 ± 0	493 ± 66	<1	<1	3 ± 1	14 ± 2	<0.05	<0.05
	Mar-24	<1	<1	<5	363 ± 127	<1	<1	2 ± 1	8 ± 2	<0.05	<0.05
	Jun-24	<1	<1	9 ± 0	127 ± 28	<1	<1	3 ± 1	5 ± 0	<0.05	<0.05
RCI	Aug-24	<1	<1	9 ± 1	335 ± 57	<1	<1	2 ± 1	6 ± 0	<0.05	<0.05
	Nov-24	<1	<1	13 ± 1	293 ± 78	<1	<1	4 ± 1	12 ± 2	<0.05	<0.05
	Mar-24	<1	<1	<5	187 ± 58	<1	<1	<1	6 ± 1	<0.05	<0.05
RB	Jun-24	<1	<1	9 ± 1	97 ± 42	<1	<1	2 ± 1	5 ± 1	<0.05	<0.05
KD	Aug-24	<1	<1	8 ± 0	430 ± 95	<1	<1	1 ± 0	7 ± 1	<0.05	<0.05
	Nov-24	<1	<1	12 ± 0	233 ± 19	<1	<1	2 ± 0	9 ± 1	<0.05	<0.05
95%	AWQG	-			-	4.4	l.	-		0.	4
99%	AWQG	-			-	2.2		-		0.	1

Site	Currier	Molybdenur	n (µg/L)	Nickel (µg/L)		Silver (µ	g/L)	Tin (µg/	/L)	Vanadiur	n (µg/L)	Zinc (ıg/L)
Site	Survey	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total
	Mar-24	10 ± 0	10 ± 1	<1	1.7 ± 0.2	<1	<1	<1	<1	2.2 ± 0.0	4.6 ± 0.3	<1	<1
PoR	Jun-24	11 ± 0	11 ± 1	<1	<1	<1	<1	<1	<1	2.0 ± 0.1	3.8 ± 0.4	<1	6.2 ± 0.4
POR	Aug-24	9 ± 0	10 ± 0	<1	3.9 ± 0.9	<1	<1	<1	<1	1.8 ± 0.0	7.7 ± 1.7	2.0 ± 0.5	5.0 ± 1.3
	Nov-24	12 ± 0	11 ± 0	<1	3.4 ± 0.8	<1	<1	<1	<1	2.0 ± 0.1	6.6 ± 1.2	4.1 ± 1.7	6.0 ± 1.0
	Mar-24	12 ± 0	12 ± 0	<1	1.0 ± 0.2	<1	<1	<1	<1	2.1 ± 0.1	4.0 ± 0.2	<1	<1
	Jun-24	11 ± 0	11 ± 0	<1	1.7 ± 0.4	<1	<1	<1	<1	2.4 ± 0.2	2.9 ± 0.2	1.4 ± 0.4	2.6 ± 1.1
NW	Aug-24	10 ± 0	11 ± 0	<1	1.2 ± 0.4	<1	<1	<1	<1	1.5 ± 0.1	3.2 ± 0.6	1.4 ± 0.4	1.5 ± 0.4
	Nov-24	12 ± 0	12 ± 0	<1	1.5 ± 0.4	<1	<1	<1	<1	1.8 ± 0.1	3.5 ± 0.6	<1	3.1 ± 0.7
	Mar-24	13 ± 0	13 ± 0	<1	<1	<1	<1	<1	<1	2.4 ± 0.1	4.3 ± 0.2	<1	<1
	Jun-24	12 ± 0	12 ± 0	<1	<1	<1	<1	<1	<1	2.5 ± 0.1	2.9 ± 0.1	2.2 ± 0.6	5.7 ± 1.3
WB	Aug-24	11 ± 0	12 ± 0	<1	<1	<1	<1	<1	<1	1.7 ± 0.0	3.3 ± 0.2	<1	2.5 ± 0.9
	Nov-24	12 ± 0	12 ± 0	<1	<1	<1	<1	<1	<1	2.0 ± 0.0	2.9 ± 0.2	1.9 ± 0.2	5.4 ± 2.6
	Mar-24	11 ± 0	11 ± 0	<1	<1	<1	<1	<1	<1	1.5 ± 0.0	2.4 ± 0.2	<1	2.7 ± 0.9
5.01	Jun-24	11 ± 0	12 ± 1	<1	<1	<1	<1	<1	<1	1.6 ± 0.1	1.8 ± 0.2	4.3 ± 0.7	5.7 ± 0.6
RCI	Aug-24	11 ± 0	11 ± 0	<1	<1	<1	<1	<1	<1	2.7 ± 0.1	3.0 ± 0.2	1.6 ± 0.4	1.9 ± 0.2
	Nov-24	12 ± 0	11 ± 0	<1	<1	<1	<1	<1	<1	2.1 ± 0.0	1.7 ± 0.2	1.9 ± 0.5	1.6 ± 0.2
	Mar-24	10 ± 0	11 ± 0	<1	<1	<1	<1	<1	<1	1.7 ± 0.2	2.2 ± 0.2	<1	1.3 ± 0.8
	Jun-24	10 ± 1	11 ± 0	<1	<1	<1	<1	<1	<1	1.6 ± 0.1	1.8 ± 0.1	<1	1.0 ± 0.5
RB	Aug-24	10 ± 0	10 ± 0	<1	<1	<1	<1	<1	<1	2.5 ± 0.1	2.9 ± 0.3	1.9 ± 0.6	1.4 ± 0.4
	Nov-24	12 ± 0	11 ± 0	<1	<1	<1	<1	<1	<1	2.0 ± 0.1	1.9 ± 0.2	4.2 ± 1.1	1.5 ± 0.5
95%	AWQG	-		70)	1.4		-		10	0	8	
99%	AWQG	-		7		0.8		-		50)	3.3	3

	Z	one	Survey		Inte	raction	
Parameter	P-	F	P-	F	P-	F	Comment
	value	statistic	value	statistic	value	statistic	
							Temperatures were significantly different for each survey, increasing in temperature
Temperature	< 0.05	401	< 0.05	69428	< 0.05	166	from June < August < March < November.
remperature	<0.05	401	<0.05	09420	<0.05	100	Temperatures were significantly different for each zone, increasing in temperature from
							PoR < RCI < RB < NW < WB.
							Conductivity was significantly different for each survey, increasing in conductivity from
Conductivity	< 0.05	1332	< 0.05	3533	< 0.05	165	August < June < March < November.
00110000111							Conductivity was significantly lowest in PoR, followed by NW. WB and RB were
							significantly the same and RCI was significantly higher.
	0.05	400	0.05		0.05	10	pH was significantly lower in June than March and November and significantly higher in
рН	<0.05	408	<0.05	39	<0.05	12	November.
							pH in PoR and RB were significantly higher than other zones. Turbidity was significantly different for each survey, increasing in turbidity from June <
Turbidity	<0.05	415	< 0.05	64	< 0.05	26	November < August < March.
Turbluity	<0.05	415	<0.05	04	<0.05	20	Turbidity was significantly highest in PoR than other zones.
							DO was significantly different for each survey, increasing in oxygenation from June <
Dissolved	< 0.05	302	< 0.05	83	< 0.05	27	March < August < November.
Oxygen		002			10.00		DO was significantly higher in PoR and WB and significantly lower in NW and RCI.
		10					TSS was significantly higher in March than all other surveys.
TSS	<0.05	40	<0.05	14	0.07	2	TSS was significantly highest in PoR than other zones.
Chlaraphyllia	7.5	<1	-0.05	15	0.4	1	Chlorophyll a was significantly higher in March than all other surveys.
Chlorophyll a	7.5	<1	<0.05	15	0.4	I	Chlorophyll a was significantly highest in PoR than other zones.
							Phosphorus was significantly higher in March and August and significantly lower in
Phosphorus	<0.05	70	< 0.05	13	0.34	1.1	June.
							Phosphorus was significantly highest in PoR than other zones.
FRP	< 0.05	78	0.09	2	0.18	1.4	FRP was significantly higher in PoR than all other zones.
							Nitrogen was significantly higher in March and were significantly lower in June and
Nitrogen	<0.05	39	< 0.05	16	<0.05	3	August.
							Nitrogen was significantly higher in PoR than all other zones.
Ammonia	<0.05	6	< 0.05	14	0.07	2	Ammonia was significantly higher in March than all other surveys.
							Ammonia was significantly higher in POR and WB than all other zones.
Nitrogen oxides	< 0.05	17	< 0.05	3.7	0.08	2	NOx was significantly higher in March than all other surveys.
TOC	< 0.05	11	< 0.05	10	0.76	<1	NOx was significantly highest in PoR than other zones. TOC was significantly higher in March and August than all other surveys.
100	<0.00		<0.05	10	0.70	<	TOC was significantly higher in warch and August than all other surveys.

Table A5 Results of two-way ANOVAs for PoR statistical comparison with PCIMP zones.

Note no analyses able to be performed for, total and dissolved cadmium, mercury, silver and tin, and dissolved chromium, cobalt, copper, gallium, lead and nickel as site concentrations generally < LOR.

		one	Survey		Interaction				
Parameter	P-	F	P-	F	P-	F	Comment		
	value	statistic	value	statistic	value	statistic			
							TOC was significantly higher in PoR than other zones.		
DOC	<0.05	8	0.64	<1	< 0.05	3	No significant difference between surveys.		
							DOC was significantly higher in NW, WB and PoR.		
Dissolved Al	<0.05	7	<0.05	11	<0.05	4	Dissolved AI was significantly higher in March and November than the other surveys. Dissolved AI was significantly higher in WB except PoR.		
Total Al	<0.05	42	< 0.05	11	< 0.05	3	Total AI was significantly lower in June than all other surveys.		
i otai / ti	NO.00	12		••		Ű	Total AI was significantly highest in PoR than other zones.		
Dissolved As	< 0.05	28	< 0.05	9	< 0.05	4	Dissolved As was significantly higher in March and November.		
Diccontratio	40.00	20		0		•	Dissolved As was significantly highest in RCI and RB than other zones.		
Total As	< 0.05	9	< 0.05	7	0.05	2	Total As was significantly higher in March.		
							Total As was significantly highest in PoR than all other zones.		
Total Cr	<0.05	3	0.16	2	0.12	2	Total Cr was significantly higher in PoR than other zones.		
Total Co	<0.05	9	< 0.05	5	< 0.05	4	Total Co was significantly higher in August except November.		
							Total Co was significantly higher in PoR than all other zones.		
Total Cu	0.59	<1	< 0.05	4	0.23	1	Total Cu was significantly higher in June except November.		
Total Gallium	<0.05	7	< 0.05	7	< 0.05	4	Total Ga was significantly higher in August.		
rotar Gaman	40.00	•	10.00	•		•	Total Ga was significantly higher in PoR than all other zones.		
							Dissolved Fe was significantly higher in November and March was significantly lower		
Dissolved Fe	<0.05	17	< 0.05	96	< 0.05	5	than the other surveys.		
							Dissolved Fe in PoR, RCI and RB were significantly higher than all other zones.		
Total Fe	< 0.05	39	< 0.05	8	< 0.05	2	Total Fe was significantly lower in June than all other surveys.		
Total TC	<0.00	00	<0.00	0	<0.00	2	Total Fe in PoR was significantly higher than all other zones.		
Dissolved Mn	<0.05	5	< 0.05	4	0.89	<1	Dissolved Mn was significantly higher in November except for June.		
Dissolved Mill	<0.00	0	<0.00		0.05		Dissolved Mn in PoR was significantly lower than all other sites except RB		
Total Mn	<0.05	40	< 0.05	9	0.05	2	Total Mn was significantly lower in June and significantly higher in March.		
	<0.05	40	<0.05	9	0.05	2	Total Mn in PoR was significantly higher than all other zones		
Dissolved Mo	<0.05	14	< 0.05	28	<0.05	4	Dissolved Mo was significantly lower in August < June < March < November.		
DISSOIVED IVID	<0.05	14	<0.05	20	<0.05	4	Dissolved Mo was significantly higher in WB than all other zones.		
Total Mo	<0.05	18	< 0.05	7	0.06	2	Total Mo was significantly lower in August than all other surveys.		
TOTALINO	<0.05	10	<0.05	/	0.06	2	Total Mo was significantly higher in WB than all other zones.		
Total Ni	-0.0E	24	-0.05	2	-0.05	4	Total Ni resulted in no differences between surveys.		
I OLAI INI	<0.05	24	<0.05	3	<0.05	4	Total Ni significantly highest in PoR followed by NW than other zones.		
Total Dh	-0.0E	Δ	-0.0F	Λ	-0.05	2	Total Pb was significantly higher in August, except November.		
Total Pb	<0.05	4	<0.05	4	<0.05	2	Total Pb was significantly higher in PoR than all other zones.		
Dissolved V	<0.05	4	0.8	<1	< 0.05	27	Dissolved V significantly highest in WB than all other zones.		
Total \/	-0.0E	20	-0.05	7	-0.05	2	Total V significantly lowest in June, except November.		
Total V	< 0.05	29	<0.05	7	< 0.05	3	Total V significantly highest in PoR than all other zones.		

	Zone		Survey		Interaction				
Parameter	P-	F	P- F P- F Comment		Comment				
	value	statistic	value	statistic	value	statistic			
Dissolved Zn	<0.05	1	< 0.05	14	< 0.05	Б	Dissolved Zn significantly lower in March.		
Dissolveu Zii	<0.05	4	<0.05	14	<0.05	5	Dissolved Zn significantly highest in RCI, except for PoR and RB.		
Total Zn	<0.05	1	< 0.05	7	0.12	2	Total Zn significantly higher in June, except November.		
TOTAL	<0.05	4	<0.05	7	0.12	2	Total Zn significantly highest in PoR, except for WB and RCI.		

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

REPORT OF ANALYSIS

			Page: 1 of 5 Report No. RN1424928
Client :	VISION ENVIRONMENT PTY LTD (QLD)	Job No.	: VISI05/240328
	U3 / 165 AUCKLAND STREET	Quote No.	: QT-02093
	GLADSTONE CENTRAL QLD 4680	Order No.	:
		Date Received	: 28-MAR-2024
Attention :	FELICITY MELVILLE	Sampled By	: CLIENT
Project Name :			
Your Client Ser	vices Manager : Danny Slee	Phone	:
Lab Reg No.	Sample Ref	Sample Description	
N24/006770	POR1	SEAWATER 25/03/2024 09:37	
N24/006771	POR2A	SEAWATER 25/03/2024 10:08	
N24/006772	POR2B	SEAWATER 25/03/2024 10:08	
N24/006773	POR3	SEAWATER 25/03/2024 09:54	

Lab Reg No.		N24/006770	N24/006771	N24/006772	N24/006773	
Date Sampled		25-MAR-2024	25-MAR-2024	25-MAR-2024	25-MAR-2024	
	Units					Method
Filtered Trace Elements by	ICP					
Aluminium Filtered	ug/L	7.5	8.5	8.1	8.1	NT2_47
Arsenic Filtered	ug/L	1.2	1.4	1.3	1.5	NT2_47
Cadmium Filtered	ug/L	< 0.1	< 0.1	< 0.1	< 0.1	NT2_47
Chromium Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Cobalt Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Copper Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Gallium Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Iron Filtered	ug/L	6.9	<5	<5	5.7	NT2_47
Lead Filtered	ug/L	< 1	<1	<1	<1	NT2_47
Manganese Filtered	ug/L	< 1	<1	<1	<1	NT2_47
Molybdenum Filtered	ug/L	10	10	9	10	NT2_47
Nickel Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Silver Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Tin Filtered	ug/L	<1	< 1	< 1	<1	NT2_47
Vanadium Filtered	ug/L	2.1	2.2	2	2.2	NT2_47
Zinc Filtered	ug/L	< 1	< 1	< 1	<1	NT2_47
Filtered Mercury by CV-AA	S					-
Mercury - Filtered	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Total Recoverable Trace El	ements by ICP					
Aluminium Total	ug/L	2800	2200	690	2660	NT2_47
Arsenic Total	ug/L	1.9	2	1.9	1.9	NT2_47
Cadmium Total	ug/L	< 0.1	< 0.1	< 0.1	< 0.1	NT2_47
Chromium Total	ug/L	2.5	1.7	< 1	1.8	NT2_47
Cobalt Total	ug/L	<1	< 1	< 1	<1	NT2_47
Copper Total	ug/L	<1	< 1	< 1	<1	NT2_47
Gallium Total	ug/L	<1	< 1	< 1	<1	NT2_47
Iron Total	ug/L	2300	2040	940	2190	NT2 47

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 2 of 5 Report No. RN1424928

Lab Reg No.		N24/006770	N24/006771	N24/006772	N24/006773	
Date Sampled		25-MAR-2024	25-MAR-2024	25-MAR-2024	25-MAR-2024	
	Units					Method
Total Recoverable Trace I	Elements by ICP		·	•	•	
Lead Total	ug/L	<1	<1	<1	< 1	NT2_47
Manganese Total	ug/L	52	45	41	37	NT2_47
Molybdenum Total	ug/L	9.3	9.6	8.9	11	NT2_47
Nickel Total	ug/L	1.8	1.2	1	2	NT2_47
Silver Total	ug/L	<1	<1	< 1	< 1	NT2_47
Tin Total	ug/L	<1	<1	< 1	< 1	NT2_47
Vanadium Total	ug/L	4.9	4	3.5	4.9	NT2_47
Zinc Total	ug/L	<1	<1	< 1	< 1	NT2_47
Total Recoverable Mercur	y by CV-AAS					
Mercury - Total	ug/L	<0.1	<0.1	<0.1	< 0.1	NT2_44
Dates						
Date extracted		5-APR-2024	5-APR-2024	5-APR-2024	5-APR-2024	
Date analysed		9-APR-2024	9-APR-2024	9-APR-2024	9-APR-2024	

Pankaj Barai, Analyst Inorganics - NSW

Accreditation No. 198

15-APR-2024

Lab Reg No.		N24/006770	N24/006771	N24/006772	N24/006773	
Date Sampled		25-MAR-2024	25-MAR-2024	25-MAR-2024	25-MAR-2024	
	Units					Method
Miscellaneous						
Suspended Solids - Total	mg/L	80	97	87	67	NW_S13
Dates						
Date extracted		11-APR-2024	11-APR-2024	11-APR-2024	11-APR-2024	
Date analysed		12-APR-2024	12-APR-2024	12-APR-2024	12-APR-2024	

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

15-APR-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

						Page: 3 of 5	
					Report	No. RN1424928	
Client : VISION ENVIRO	ONMENT PTY L	TD (QLD)		Job No.	: VISI05/2	240328	
U3 / 165 AUC	KLAND STREET			Quote No.	: QT-020	93	
GLADSTONE C	ENTRAL QLD	4680		Order No.			
				Date Received	eived : 28-MAR-2024		
Attention : FELICITY MELV	/ILLE			Sampled By	: CLIENT		
Project Name :							
Your Client Services Manager	: Danny Sle	e		Phone	:		
Lab Reg No. Sample Re	f		Sample Description				
N24/006774 FB5		FRESHWATER 25/0	3/2024 12:00				
Lab Reg No.		N24/006774					
Date Sampled		25-MAR-2024					
	Units					Method	
Filtered Trace Elements by ICP							
Aluminium Filtered	ug/L	< 5				NT2_47	
Arsenic Filtered	ug/L	<1				NT2_47	
Cadmium Filtered	ug/L	< 0.1				NT2_47	
Chromium Filtered	ug/L	<1				NT2_47	
Cobalt Filtered	ug/L	<1				NT2_47	
Copper Filtered	ug/L	<1				NT2_47	
Gallium Filtered	ug/L	<1				NT2_47	
Iron Filtered	ug/L	<5				NT2_47	
Lead Filtered	ug/L	<1				NT2_47	
Manganese Filtered	ug/L	<1				NT2_47	
Molybdenum Filtered	ug/L	<1				NT2_47	
Nickel Filtered	ug/L	<1				NT2_47	
Silver Filtered	ug/L	<1				NT2_47	
Tin Filtered	ug/L	<1				NT2_47	
Vanadium Filtered	ug/L	<1				NT2_47	
Zinc Filtered	ug/L	<1				NT2_47	
Filtered Mercury by CV-AAS			·	·			
Mercury - Filtered	ug/L	< 0.05				NT2_44	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

<5

<1

<1

<1

<1

<1

<5

< 1

< 1

<1

< 0.1

Total Recoverable Trace Elements by ICP

ug/L

Aluminium Total

Arsenic Total

Cobalt Total

Copper Total

Gallium Total

Iron Total

Lead Total

Manganese Total

Molybdenum Total

Cadmium Total

Chromium Total

National Measurement Institute

NT2 47

NT2 47

NT2 47

NT2 47

NT2 47

NT2 47

NT2_47 NT2 47

NT2 47

NT2 47

NT2_47

Page: 4 of 5 Report No. RN1424928

Lab Reg No.		N24/006774	
Date Sampled		25-MAR-2024	
	Units		Method
Total Recoverable Trace	Elements by ICP		
Nickel Total	ug/L	<1	NT2_47
Silver Total	ug/L	<1	NT2_47
Tin Total	ug/L	<1	NT2_47
Vanadium Total	ug/L	<1	NT2_47
Zinc Total	ug/L	<1	NT2_47
Total Recoverable Merc	ury by CV-AAS		
Mercury - Total	ug/L	<0.1	NT2_44
Dates	<u>.</u>	· · · · · · · · · · · · · · · · · · ·	
Date extracted		5-APR-2024	
Date analysed		9-APR-2024	

Pankaj Barai, Analyst

Inorganics - NSW Accreditation No. 198

15-APR-2024

Lab Reg No.		N24/006774	
Date Sampled		25-MAR-2024	
	Units		Method
Miscellaneous			
Suspended Solids - Total	mg/L	<2	NW_\$13
Dates			
Date extracted		11-APR-2024	
Date analysed		12-APR-2024	

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

15-APR-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 5 of 5 Report No. RN1424928

Total = acid extractable elements

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

* Denotes the analyte or test method is not within our ISO/IEC 17025 scope of accreditation.

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client. The testing was undertaken at: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

QUALITY ASSURANCE REPORT

Client: QA Report No: VISION ENVIRONMENT PTY LTD (QLD) VISI05/240327

VISI05/240328 VISI05/240328/2 Matrix: Water

Analyte	Method	Units	LOR	Blank		Duplicates		Reco	veries
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section					N24/0	06795			N24/006795
Aluminium Filtered	NT2_47	ug/L	5	<5	8.4	8.3	1	104	98
Arsenic Filtered	NT2_47	ug/L	1	<1	1.4	1.3	7	113	108
Cadmium Filtered	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	104	101
Chromium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	96
Cobalt Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	111	100
Copper Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	98
Gallium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	95	104
Iron Filtered	NT2_47	ug/L	5	<5	<5	5.2	NA	102	96
Lead Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	96
Manganese Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	97
Mercury - Filtered	NT2_44	ug/L	0.05	< 0.05	<0.05	<0.05	NA	102	110
Molybdenum Filtered	NT2_47	ug/L	1	<1	13	13	0	106	106
Nickel Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	110	98
Silver Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	93	95
Tin Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	103
Vanadium Filtered	NT2_47	ug/L	1	<1	2.3	2.4	4	93	109
Zinc Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	96	101
Aluminium Total	NT2_47	ug/L	5	<5	NA	NA	NA	104	98
Arsenic Total	NT2_47	ug/L	1	<1	1.8	1.8	0	113	105
Cadmium Total	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	104	104
Chromium Total	NT2_47	ug/L	1	<1	<1	<1	NA	102	101
Cobalt Total	NT2_47	ug/L	1	<1	<1	<1	NA	111	102
Copper Total	NT2_47	ug/L	1	<1	<1	<1	NA	102	97
Gallium Total	NT2_47	ug/L	1	<1	<1	<1	NA	95	96
Iron Total	NT2_47	ug/L	5	<5	1240	1380	11	102	99
Lead Total	NT2_47	ug/L	1	<1	<1	<1	NA	104	104
Manganese Total	NT2_47	ug/L	1	<1	26	28	7	102	97
Mercury - Total	NT2_44	ug/L	0.05	0.05	<0.05	<0.05	NA	102	98
Molybdenum Total	NT2_47	ug/L	1	<1	13	13	0	106	118
Nickel Total	NT2_47	ug/L	1	<1	<1	1.1	NA	110	97
Silver Total	NT2_47	ug/L	1	<1	<1	<1	NA	93	104
Tin Total	NT2_47	ug/L	1	<1	<1	<1	NA	104	95

Analyte	Method	Units	LOR	Blank	Duplicates Recoveries				veries
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Vanadium Total	NT2_47	ug/L	1	<1	4.5	4.5	0	93	97
Zinc Total	NT2_47	ug/L	1	<1	<1	<1	NA	96	108

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

Im

Dr Andrew Evans Inorganics, NMI (North Ryde) 12/04/2024

QUALITY ASSURANCE REPORT

Client:	VISION ENVIRONMENT PTY LTD (QLD)
QA Report No:	VISI05/240328

Matrix: Water

LOR Analyte Method Units Blank Duplicates Recoveries Sample Duplicate RPD LCS Matrix Spike % % % N24/006770 N24/006770 Inorganics Section Suspended Solids - Total NW_S13 mg/L 2 <2 82 78 5 1120 NA

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Am

Dr Andrew Evans Inorganics, NMI (North Ryde) 15/04/2024

Date:

105 Delhi Road, North Ryde NSW 2113 www.measurement.gov.au Tel: +61 2 9449 0111

CERTIFICATE OF ANALYSIS

Work Order	EB2410747	Page	: 1 of 2	
Client	: VISION ENVIRONMENT ANZ	Laboratory	Environmental Division Br	isbane
Contact	: FELICITY MELVILLE	Contact	: Customer Services EB	
Address	: OFFICE 3 165 AUCKLAND STREET	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	GLADSTONE 4680			
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: PCIMP POR MARCH 2024	Date Samples Received	: 02-Apr-2024 15:00	and the
Order number	:	Date Analysis Commenced	: 04-Apr-2024	Support of the second s
C-O-C number	:	Issue Date	: 05-Apr-2024 12:19	HAC-MRA NATA
Sampler	:			HOC-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			The Andrews Andrews Ale and
No. of samples received	: 5			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Don Sirimanne

Senior Biologist - Water

Position

Microbiology / Biology, Hume, ACT

Accreditation Category

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	POR1	POR2A	POR2B	POR3	FB5
		Samplir	ng date / time	25-Mar-2024 11:23	25-Mar-2024 11:02	25-Mar-2024 11:02	25-Mar-2024 10:35	25-Mar-2024 10:22
Compound	CAS Number	LOR	Unit	EB2410747-001	EB2410747-002	EB2410747-003	EB2410747-004	EB2410747-005
				Result	Result	Result	Result	Result
EP008CA: Chlorophyll a								
Chlorophyll a		0.02	µg/L	3.00	1.31	1.15	1.00	<0.02

Inter-Laboratory Testing

Analysis conducted by ALS Canberra, NATA accreditation no. 992.

(WATER) EP008CA: Chlorophyll a

QUALITY CONTROL REPORT

Work Order	: EB2410747	Page	: 1 of 3	
Client		Laboratory	: Environmental Division Br	isbane
Contact	: FELICITY MELVILLE	Contact	: Customer Services EB	
Address	: OFFICE 3 165 AUCKLAND STREET GLADSTONE 4680	Address	: 2 Byth Street Stafford QLI	D Australia 4053
Telephone	:	Telephone	: +61-7-3243 7222	
Project	: PCIMP POR MARCH 2024	Date Samples Received	: 02-Apr-2024	
Order number	:	Date Analysis Commenced	: 04-Apr-2024	
C-O-C number	:	Issue Date	05-Apr-2024	
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			Accreditation No. 825
No. of samples received	: 5			Accreditation No. 825
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Don Sirimanne	Senior Biologist - Water	Microbiology / Biology, Hume, ACT

right solutions. right partner

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP008CA: Chlorophy	ll a (QC Lot: 5703487)								
CA2402151-001	Anonymous	EP008: Chlorophyll a		0.02	µg/L	4.49	4.42	1.7	0% - 20%

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
				Report	Spike	Spike Recovery (%)	Acceptable	ELimits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP008CA: Chlorophyll a (QCLot: 5703487)								
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	102	85.0	113

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

Forensic and Scientific Services

CERTIFICATE OF ANALYSIS

CLIENT : (HVEC) Vision Environment ANZ 3/165 Auckland St GLADSTONE QLD 4680 felicity@visionenvironment.com.au

ATTN: Felicity Melville

Laboratory Reference : Client Order No. : Quote Number : Date Received : Date Commenced : Laboratory Number/s :

: SSP0088097 : MELVILLE_F : 23IN1102_F Melville : 03-Apr-2024 : 04-Apr-2024 : SS24KN1264-SS24KN1268

Number of Samples:5Reason for Analysis:Environmental researchMethod/s of Analysis:13796 - Nitrogen (Ammonia) by Flow Injection Analysis
13798 - Nitrogen (Oxides) by Flow Injection Analysis
13799 - Phosphorus (Filterable Reactive) by Flow Injection Analysis
13800 - Phosphorus (Total) by Simultaneous Persulfate or Kjeldahl Digestion
13802 - Nitrogen (Total) by Simultaneous Persulfate Digestion
16628 - Total Organic Carbon by High Temperature Oxidation

SS24KN1264-SS24KN1268

Matthew Cross Laboratory Technician, Inorganic Chemistry 15-Apr-2024

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Enquiries Matthew Cross Phone (+61 7) 3096 2805 Email matthew.cross@health.qld.gov.au

34404-69576 Printed: 09:41 15-Apr-24 mwcp1

39 Kessels Road Coopers Plains QLD 4108 AUSTRALIA PO Box 594 Archerfield QLD 4108 AUSTRALIA
 Phone
 (+61) 1800 000 FSS (377)

 Fax
 (+61 7) 3096 2977

 Email
 FSS@health.qld.gov.au

Client	Reference			POR1	POR2A	POR2B	POR3		
Sample Type					Water Sea Water Sea		Water Sea	Water Sea	Water Sea
Sampl	ing Time/Date			09:37 25-Mar-2024	10:08 25-Mar-2024	10:08 25-Mar-2024	09:54 25-Mar-2024		
				Filtered and Frozen	Filtered and Frozen	Filtered and Frozen	Filtered and Frozen		
Sampl	e Description								
Method	Nutrients	Units	Reporting Limit	SS24KN1264	SS24KN1265	SS24KN1266	SS24KN1267		
13796	Ammonia	mg/L as N	0.002	0.014	0.011	0.016	0.010		
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	0.016	0.008	0.008	0.010		
13798	Nitrogen Oxides	mg/L as N	0.002	0.044	0.024	0.030	0.045		
13800	Total Phosphorus	mg/L as P	0.003	0.055	0.044	0.045	0.040		
13802	Total Nitrogen	mg/L as N	0.02	0.31	0.23	0.24	0.25		
		mg/L as C	1	2	2	2	2		
16628	Total Organic Carbon as NPOC								

Client	Client Reference							
Sampl	Water Sea							
Sampl	ing Time/Date			12:00 25-Mar-2024				
Sampl	Filtered and Frozen							
Method	Nutrients	Units	Reporting Limit	SS24KN1268				
13796	Ammonia	mg/L as N	0.002	0.005				
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	< 0.002				
13798	Nitrogen Oxides	mg/L as N	0.002	< 0.002				
13800	Total Phosphorus	mg/L as P	0.003	< 0.003				
13802	Total Nitrogen	mg/L as N	0.02	< 0.02				
16628	Total Organic Carbon as NPOC	mg/L as C	1	< 1				
		mg/L as C	0.5	< 0.5				

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

REPORT OF ANALYSIS

			Page: 1 of 6 Report No. RN1434520			
Client :	VISION ENVIRONMENT PTY LTD (QLD)	Job No.	: VISI05/240619/1			
	U3 / 165 AUCKLAND STREET	Quote No.	: QT-02093			
	GLADSTONE CENTRAL QLD 4680	Order No.	:			
		Date Received	: 19-JUN-2024			
Attention :	FELICITY MELVILLE	Sampled By	: CLIENT			
Project Name :						
Your Client Serv	vices Manager : Danny Slee	Phone	: 02 9449 0169			
Lab Reg No.	Sample Ref	Sample Description				
N24/013715	POR1	SEAWATER 12/06/2024 7:29				
N24/013716	POR2	SEAWATER 13/06/2024 8:10				
N24/013717	POR3A	SEAWATER 13/06/2024 7:48				
N24/013718	POR3B	SEAWATER 13/06/2024 7:48				

Lab Reg No.		N24/013715	N24/013716	N24/013717	N24/013718	
Date Sampled		12-JUN-2024	13-JUN-2024	13-JUN-2024	13-JUN-2024	
	Units					Method
Filtered Trace Elements by	ICP					
Aluminium Filtered	ug/L	< 5	<5	<5	< 5	NT2_47
Arsenic Filtered	ug/L	1.1	1.1	1.2	1.2	NT2_47
Cadmium Filtered	ug/L	< 0.1	<0.1	<0.1	< 0.1	NT2_47
Chromium Filtered	ug/L	<1	<1	<1	<1	NT2_47
Cobalt Filtered	ug/L	<1	<1	<1	<1	NT2_47
Copper Filtered	ug/L	< 1	<1	<1	<1	NT2_47
Gallium Filtered	ug/L	<1	<1	<1	<1	NT2_47
Iron Filtered	ug/L	8.8	6.7	8.5	8.1	NT2_47
Lead Filtered	ug/L	<1	<1	<1	<1	NT2_47
Manganese Filtered	ug/L	<1	<1	<1	<1	NT2_47
Molybdenum Filtered	ug/L	10	11	11	10	NT2_47
Nickel Filtered	ug/L	<1	<1	<1	<1	NT2_47
Silver Filtered	ug/L	<1	<1	<1	<1	NT2_47
Tin Filtered	ug/L	<1	<1	<1	<1	NT2_47
Vanadium Filtered	ug/L	2	2.1	1.9	2	NT2_47
Zinc Filtered	ug/L	<1	<1	<1	<1	NT2_47
Filtered Mercury by CV-AA	S	•				•
Mercury - Filtered	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Total Recoverable Trace El	ements by ICP	•				•
Aluminium Total	ug/L	1840	950	1000	960	NT2_47
Arsenic Total	ug/L	1.4	1.3	1.5	1.6	NT2_47
Cadmium Total	ug/L	< 0.1	<0.1	<0.1	< 0.1	NT2_47
Chromium Total	ug/L	1.1	<1	1	<1	NT2_47
Cobalt Total	ug/L	<1	<1	<1	<1	NT2_47
Copper Total	ug/L	<1	<1	<1	<1	NT2_47
Gallium Total	ug/L	<1	<1	<1	<1	NT2_47
Iron Total	ug/L	1630	780	1440	1040	NT2 47

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 2 of 6 Report No. RN1434520

Lab Reg No.		N24/013715	N24/013716	N24/013717	N24/013718	
Date Sampled		12-JUN-2024		13-JUN-2024	13-JUN-2024	
	Units					Method
Total Recoverable Trace B	Elements by ICP					
Lead Total	ug/L	<1	<1	<1	<1	NT2_47
Manganese Total	ug/L	21	16	33	30	NT2_47
Molybdenum Total	ug/L	10	10	12	12	NT2_47
Nickel Total	ug/L	1.5	<1	1.0	<1	NT2_47
Silver Total	ug/L	<1	<1	<1	<1	NT2_47
Tin Total	ug/L	<1	<1	<1	<1	NT2_47
Vanadium Total	ug/L	3.8	3.2	4.5	4.1	NT2_47
Zinc Total	ug/L	6.9	6.2	5.5	3.4	NT2_47
Total Recoverable Mercur	y by CV-AAS		•	•	•	
Mercury - Total	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Dates						
Date extracted		21-JUN-2024	21-JUN-2024	21-JUN-2024	21-JUN-2024	
Date analysed		25-JUN-2024	25-JUN-2024	25-JUN-2024	25-JUN-2024	

N24/013715

- N24/013719

Total and filtered zinc results have been amended to report ICP-MS not ICP-OES results.

Pankaj Barai, Analyst

Inorganics - NSW Accreditation No. 198

12-JUL-2024

Andrew Evans, Analyst Inorganics - NSW Accreditation No. 198

Lab Reg No.		N24/013715	N24/013716	N24/013717	N24/013718	
Date Sampled		12-JUN-2024	13-JUN-2024	13-JUN-2024	13-JUN-2024	
	Units					Method
Miscellaneous						
Suspended Solids - Total	mg/L	36	20	52	40	NW_S13
Dates						
Date extracted		1-JUL-2024	1-JUL-2024	1-JUL-2024	1-JUL-2024	
Date analysed		1-JUL-2024	1-JUL-2024	1-JUL-2024	1-JUL-2024	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 3 of 6

Report No. RN1434520

Lab Reg No.		N24/013715	N24/013716	N24/013717	N24/013718	
Date Sampled		12-JUN-2024	13-JUN-2024	13-JUN-2024	13-JUN-2024	
	Units					Method

Þ _____ ~

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

12-JUL-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

						Page: 4 of 6
						Report No. RN1434520
Client	: VISION ENVIRO	NMENT PTY LT	D (QLD)		Job No.	: VISI05/240619/1
	U3 / 165 AUCK	LAND STREET			Quote No.	: QT-02093
	GLADSTONE CE	NTRAL QLD 4	680		Order No.	:
					Date Received	: 19-JUN-2024
Attention	: FELICITY MELV	ILLE			Sampled By	: CLIENT
Project Name	:					
Your Client Se	rvices Manager	: Danny Slee			Phone	: 02 9449 0169
Lab Reg No.	Sample Ref			Sample Descripti	on	
N24/013719	FB5			FRESHWATER 12	2/06/2024 12:00	
Lab Reg No.			N24/013719			
		-				

Date Sampled		12-JUN-2024		
	Units			Method
Filtered Trace Elements by	ICP			
Aluminium Filtered	ug/L	<5		NT2_47
Arsenic Filtered	ug/L	<1		NT2_47
Cadmium Filtered	ug/L	< 0.1		NT2_47
Chromium Filtered	ug/L	<1		NT2_47
Cobalt Filtered	ug/L	<1		NT2_47
Copper Filtered	ug/L	<1		NT2_47
Gallium Filtered	ug/L	<1		NT2_47
Iron Filtered	ug/L	<5		NT2_47
Lead Filtered	ug/L	<1		NT2_47
Manganese Filtered	ug/L	<1		NT2_47
Molybdenum Filtered	ug/L	<1		NT2_47
Nickel Filtered	ug/L	<1		NT2_47
Silver Filtered	ug/L	<1		NT2_47
Tin Filtered	ug/L	<1		NT2_47
Vanadium Filtered	ug/L	<1		NT2_47
Zinc Filtered	ug/L	1.4		NT2_47
Filtered Mercury by CV-AA	S			
Mercury - Filtered	ug/L	< 0.05		NT2_44
Total Recoverable Trace El	ements by ICP			
Aluminium Total	ug/L	<5		NT2_47
Arsenic Total	ug/L	<1		NT2_47
Cadmium Total	ug/L	<0.1		NT2_47
Chromium Total	ug/L	<1		NT2_47
Cobalt Total	ug/L	<1		NT2_47
Copper Total	ug/L	<1		NT2_47
Gallium Total	ug/L	<1		NT2_47
Iron Total	ug/L	<5		NT2_47
Lead Total	ug/L	<1		NT2_47
Manganese Total	ug/L	<1		
Molybdenum Total	ug/L	<1		NT2 47

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 5 of 6 Report No. RN1434520

Lab Reg No.		N24/013719	
Date Sampled		12-JUN-2024	
	Units		Method
Total Recoverable Trace	e Elements by ICP		
Nickel Total	ug/L	<1	NT2_47
Silver Total	ug/L	<1	NT2_47
Tin Total	ug/L	<1	NT2_47
Vanadium Total	ug/L	<1	NT2_47
Zinc Total	ug/L	<1	NT2_47
Total Recoverable Merc	ury by CV-AAS		
Mercury - Total	ug/L	< 0.05	NT2_44
Dates			
Date extracted		21-JUN-2024	
Date analysed		25-JUN-2024	

Pankaj Barai, Analyst

Andrew Evans, Analyst Inorganics - NSW Accreditation No. 198

Inorganics - NSW Accreditation No. 198

12-JUL-2024

Lab Reg No.		N24/013719	
Date Sampled		12-JUN-2024	
	Units		Method
NA:	Onits		Wiethod
Miscellaneous			
Suspended Solids - Total	mg/L	< 2	NW_\$13
Dates			
Date extracted		1-JUL-2024	
Date analysed		1-JUL-2024	

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

12-JUL-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 6 of 6 Report No. RN1434520

Total = acid extractable elements

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

This Report supersedes reports: RN1433421

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client.The testing was undertaken at:105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

QUALITY ASSURANCE REPORT

VISION ENVIRONMENT PTY LTD (QLD) Client: VISI05/240619/1

QA Report No:

Matrix:

Water

Analyte	Method	Units	LOR	Blank	Duplicates			Reco	veries
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section		1			N24/0	13715			N24/013715
					•••				
Suspended Solids - Total	NW_\$13	mg/L	2	<2	34	38	11	96	NA

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

April

Dr Andrew Evans Inorganics, NMI (North Ryde) 02/07/2024

QUALITY ASSURANCE REPORT

Client:

VISION ENVIRONMENT PTY LTD (QLD) VISI05/240619/1

QA Report No:

Matrix: Water

Analyte	Method	Units	LOR	Blank	Duplicates		Recoveries		
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section					N24/0	13715			N24/013715
Aluminium Filtered	NT2_47	ug/L	5	<5	NA	NA	NA	104	NA
Arsenic Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	92	NA
Cadmium Filtered	NT2_47	ug/L	0.1	<0.1	NA	NA	NA	106	NA
Chromium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	99	NA
Cobalt Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	97	NA
Copper Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	96	NA
Gallium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	95	NA
Iron Filtered	NT2_47	ug/L	5	<5	NA	NA	NA	102	NA
Lead Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	98	NA
Manganese Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	109	NA
Mercury - Filtered	NT2_44	ug/L	0.05	<0.05	NA	NA	NA	103	NA
Molybdenum Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	NA
Nickel Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	95	NA
Silver Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	113	NA
Tin Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	104	NA
Vanadium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	NA
Zinc Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	103	NA
Aluminium Total	NT2_47	ug/L	5	<5	NA	NA	NA	104	NA
Arsenic Total	NT2_47	ug/L	1	<1	NA	NA	NA	92	NA
Cadmium Total	NT2_47	ug/L	0.1	<0.1	NA	NA	NA	106	NA
Chromium Total	NT2_47	ug/L	1	<1	NA	NA	NA	99	NA
Cobalt Total	NT2_47	ug/L	1	<1	NA	NA	NA	97	NA
Copper Total	NT2_47	ug/L	1	<1	NA	NA	NA	96	NA
Gallium Total	NT2_47	ug/L	1	<1	NA	NA	NA	95	NA
Iron Total	NT2_47	ug/L	5	<5	NA	NA	NA	102	NA
Lead Total	NT2_47	ug/L	1	<1	NA	NA	NA	98	NA
Manganese Total	NT2_47	ug/L	1	<1	NA	NA	NA	109	NA
Mercury - Total	NT2_44	ug/L	0.05	<0.05	NA	NA	NA	103	NA
Molybdenum Total	NT2_47	ug/L	1	<1	NA	NA	NA	100	NA
Nickel Total	NT2_47	ug/L	1	<1	NA	NA	NA	95	NA
Silver Total	NT2_47	ug/L	1	<1	NA	NA	NA	113	NA
Tin Total	NT2_47	ug/L	1	<1	NA	NA	NA	104	NA

Analyte	Method	Units	LOR	Blank		Duplicates		Reco	veries
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Vanadium Total	NT2_47	ug/L	1	<1	NA	NA	NA	100	NA
Zinc Total	NT2_47	ug/L	1	<1	NA	NA	NA	103	NA

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

Am

Dr Andrew Evans Inorganics, NMI (North Ryde) 03/07/2024

CERTIFICATE OF ANALYSIS

Work Order	EB2420602	Page	: 1 of 2	
Client	: VISION ENVIRONMENT ANZ	Laboratory	Environmental Division Brisbane	
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	: OFFICE 3 165 AUCKLAND STREET	Address	: 2 Byth Street Stafford QLD Australia 4053	
	GLADSTONE 4680			
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: POR June 2024	Date Samples Received	: 18-Jun-2024 10:00	
Order number	:	Date Analysis Commenced	: 24-Jun-2024	
C-O-C number	:	Issue Date	26-Jun-2024 11:34	NATA
Sampler	: Anna Skillington		Hacama	NAIA
Site	:			
Quote number	: BN/133/19 V4 PCIMP		The states of th	Accreditation No. 825
No. of samples received	: 5		Ad	credited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Don Sirimanne

Senior Biologist - Water

Position

Microbiology / Biology, Hume, ACT

Accreditation Category

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	POR 1	POR 2	POR 3A	POR 3B	FB5
		Samplii	ng date / time	12-Jun-2024 07:29	12-Jun-2024 08:10	12-Jun-2024 07:48	12-Jun-2024 07:48	12-Jun-2024 12:00
Compound	CAS Number	LOR	Unit	EB2420602-001	EB2420602-002	EB2420602-003	EB2420602-004	EB2420602-005
				Result	Result	Result	Result	Result
EP008CA: Chlorophyll a								
Chlorophyll a		0.02	µg/L	1.77	1.22	2.01	1.27	<0.02

Inter-Laboratory Testing

Analysis conducted by ALS Canberra, NATA accreditation no. 992.

(WATER) EP008CA: Chlorophyll a

QUALITY CONTROL REPORT

Work Order	: EB2420602	Page	: 1 of 3	
Client	: VISION ENVIRONMENT ANZ	Laboratory	: Environmental Division	Brisbane
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	: OFFICE 3 165 AUCKLAND STREET GLADSTONE 4680	Address	: 2 Byth Street Stafford Q	LD Australia 4053
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: POR June 2024	Date Samples Received	: 18-Jun-2024	and the second s
Order number	:	Date Analysis Commenced	: 24-Jun-2024	
C-O-C number	:	Issue Date	26-Jun-2024	A A A A A A A A A A A A A A A A A A A
Sampler	: Anna Skillington			HAC-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Position Accreditation Category

Don Sirimanne

Senior Biologist - Water

Microbiology / Biology, Hume, ACT

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

 Key :
 Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

 CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

 LOR = Limit of reporting

 RPD = Relative Percentage Difference

 # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

• No Laboratory Duplicate (DUP) Results are required to be reported.

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP008CA: Chlorophyll a (QCLot: 5878089)								
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	98.3	85.0	113
EP008CA: Chlorophyll a (QCLot: 5878090)								-
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	97.6	85.0	113

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

(

CERTIFICATE OF ANALYSIS

CLIENT: (HVEC)

Vision Environment ANZ 3/165 Auckland St GLADSTONE QLD 4680 felicity@visionenvironment.com.au

ATTN: Felicity Melville

Laboratory Reference : SSP0089173 Client Order No. Client Batch Reference : POR JUNE 2024 Date Received Date Commenced

: MELVILLE_F : 18-Jun-2024 : 19-Jun-2024 Laboratory Number/s : SS24KN2355-SS24KN2359

Number of Samples : 5 Reason for Analysis : Environmental Research Method/s of Analysis : 13796 - Nitrogen (Ammonia) by Flow Injection Analysis 13798 - Nitrogen (Oxides) by Flow Injection Analysis 13799 - Phosphorus (Filterable Reactive) by Flow Injection Analysis 13800 - Phosphorus (Total) by Simultaneous Persulfate or Kjeldahl Digestion

13802 - Nitrogen (Total) by Simultaneous Persulfate Digestion

SS24KN2355-SS24KN2359

Matthew Cross Laboratory Technician, Inorganic Chemistry

25-Jun-2024

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Matthew Cross Enquiries (+61 7) 3096 2805 Phone Email matthew.cross@health.qld.gov.au

22717-47950 Printed: 09:31 25-Jun-24 mwcp1

39 Kessels Road Coopers Plains QLD 4108 AUSTRALIA

PO Box 594 Archerfield QLD 4108 AUSTRALIA

(+61) 1800 000 FSS (377) Phone (+61 7) 3096 2977 Fax Email FSS@health.qld.gov.au

Client	Reference			POR1	POR2	POR3A	POR3B	
Sample Type				Water	Water	Water	Water	
Sampling Time/Date				07:29 12-Jun-2024	08:10 12-Jun-2024	07:48 12-Jun-2024	07:48 12-Jun-2024	
Sample Method	e Description	Units	Reporting Limit	SS24KN2355	SS24KN2356	SS24KN2357	SS24KN2358	
13796	Ammonia	mg/L as N	0.002	< 0.002	< 0.002	0.002	0.007	
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	0.014	0.011	0.011	0.010	
13798	Nitrogen Oxides	mg/L as N	0.002	0.030	0.022	0.023	0.022	
13800	Total Phosphorus	mg/L as P	0.003	0.036	0.028	0.042	0.041	
13802	Total Nitrogen	mg/L as N	0.02	0.20	0.18	0.22	0.21	
16628	Total Organic Carbon as NPOC	mg/L as C	1	2	1	2	2	
16628	Dissolved Organic Carbon as NPOC	mg/L as C	0.5	1.2	1.1	1.2	1.1	

Client	FB5 Water 12:00 12-Jun-2024			
Sampl				
Sampl				
Sampl Method	e Description	Units	Reporting Limit	SS24KN2359
13796	Ammonia	mg/L as N	0.002	0.002
	Filterable Reactive Phosphorus	mg/L as P	0.002	< 0.002
13799				
13799 13798		mg/L as N	0.002	< 0.002
13798	Nitrogen Oxides	mg/L as N mg/L as P	0.002	< 0.002 < 0.003
13798 13800				
	Nitrogen Oxides Total Phosphorus	mg/L as P	0.003	< 0.003

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

REPORT OF ANALYSIS

				Page: 1 of 3		
				Report No. RN1440360		
Client	: VISION ENVIRONMENT PTY LT) (QLD)	Job No.	: VISI05/240823		
	U3 / 165 AUCKLAND STREET		Quote No.	: QT-02093		
	GLADSTONE CENTRAL QLD 4	680	Order No.	:		
			Date Received	: 23-AUG-2024		
Attention	: FELICITY MELVILLE		Sampled By	: CLIENT		
Project Name	:					
Your Client Se	rvices Manager : Danny Slee		Phone	: 02 9449 0169		
Lab Reg No.	Sample Ref	Sample	Description			
N24/017996	POR1A	SEAWA	ATER 20/08/2024 9:40			
N24/017998	POR2	SEAWA	SEAWATER 20/08/2024 9:15			
N24/017999	POR3	SEAWA	SEAWATER 20/08/2024 9:26			
N24/018000	FB5	SEAWA	ATER 20/08/2024 12:00			

Lab Reg No.		N24/017996	N24/017998	N24/017999	N24/018000	
Date Sampled		20-AUG-2024	20-AUG-2024	20-AUG-2024	20-AUG-2024	
	Units					Method
Filtered Trace Elements by	ICP					
Aluminium Filtered	ug/L	< 5	<5	<5	< 5	NT2_47
Arsenic Filtered	ug/L	1	1.1	1.1	< 1	NT2_47
Cadmium Filtered	ug/L	< 0.1	< 0.1	< 0.1	< 0.1	NT2_47
Chromium Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Cobalt Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Copper Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Gallium Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Iron Filtered	ug/L	9.6	9	6.3	< 5	NT2_47
Lead Filtered	ug/L	<1	<1	<1	< 1	NT2_47
Manganese Filtered	ug/L	<1	<1	<1	< 1	NT2_47
Molybdenum Filtered	ug/L	9	9.7	8.4	< 1	NT2_47
Nickel Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Silver Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Tin Filtered	ug/L	<1	< 1	< 1	< 1	NT2_47
Vanadium Filtered	ug/L	1.8	1.8	1.8	< 1	NT2_47
Zinc Filtered	ug/L	1.4	1.6	3.1	< 1	NT2_47
Filtered Mercury by CV-AA	S		•	•	•	•
Mercury - Filtered	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Total Recoverable Trace El	ements by ICP		•	•	•	•
Aluminium Total	ug/L	6300	6280	2130	<5	NT2_47
Arsenic Total	ug/L	2.2	2.3	1.4	< 1	
Cadmium Total	ug/L	< 0.1	< 0.1	<0.1	< 0.1	
Chromium Total	ug/L	6.8	6.5	2.5	< 1	NT2_47
Cobalt Total	ug/L	1.5	1.4	<1	< 1	NT2_47
Copper Total	ug/L	<1	<1	<1	< 1	NT2_47
Gallium Total	ug/L	1.5	1.6	<1	< 1	NT2_47
Iron Total	ug/L	4450	4380	1510	<5	NT2 47

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 2 of 3 Report No. RN1440360

Lab Reg No.		N24/017996	N24/017998	N24/017999	N24/018000	
Date Sampled		20-AUG-2024	20-AUG-2024	20-AUG-2024	20-AUG-2024	
	Units					Method
Total Recoverable Trace E	lements by ICP					
Lead Total	ug/L	1.2	1.3	<1	< 1	NT2_47
Manganese Total	ug/L	53	49	19	< 1	NT2_47
Molybdenum Total	ug/L	9.6	10	8.9	<1	NT2_47
Nickel Total	ug/L	5.1	4.5	2.1	< 1	NT2_47
Silver Total	ug/L	<1	<1	<1	< 1	NT2_47
Tin Total	ug/L	<1	<1	<1	< 1	NT2_47
Vanadium Total	ug/L	9.7	9.2	4.3	< 1	NT2_47
Zinc Total	ug/L	6.2	6.5	2.4	< 1	NT2_47
Total Recoverable Mercur	y by CV-AAS					
Mercury - Total	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Dates						
Date extracted		9-SEP-2024	9-SEP-2024	9-SEP-2024	9-SEP-2024	
Date analysed		10-SEP-2024	10-SEP-2024	10-SEP-2024	10-SEP-2024	

Andrew Evans, Analyst Inorganics - NSW Accreditation No. 198

10-SEP-2024

Lab Reg No.		N24/017996	N24/017998	N24/017999	N24/018000	
Date Sampled		20-AUG-2024	4 20-AUG-2024	20-AUG-2024	20-AUG-2024	
	Units					Method
Miscellaneous						
Suspended Solids - Total	mg/L	65	39	25	<2	NW_S13
Dates	-					
Date extracted		28-AUG-2024	28-AUG-2024	28-AUG-2024	28-AUG-2024	
Date analysed		29-AUG-2024	29-AUG-2024	29-AUG-2024	29-AUG-2024	

Þ

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

10-SEP-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 3 of 3 Report No. RN1440360

Total = acid extractable elements

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client. The testing was undertaken at: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

QUALITY ASSURANCE REPORT

VISION ENVIRONMENT PTY LTD (QLD) Client: VISI05/240823

QA Report No:

Matrix: Water

Analyte	Method	Units	LOR	Blank		Duplicates		Reco	veries
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section					N24/0	17996			N24/017996
Suspended Solids - Total	NW_S13	mg/L	2	<2	61	69	12	100	NA

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

am

Dr Andrew Evans Inorganics, NMI (North Ryde) 06/09/2024

105 Delhi Road, North Ryde NSW 2113 www.measurement.gov.au Tel: +61 2 9449 0111

QUALITY ASSURANCE REPORT

Client: VISION ENVIRONMENT PTY LTD (QLD) VISI05/240823

QA Report No:

Matrix:

Saline Water

Analyte	Method	Units	LOR	Blank		Duplicates		Reco	overies
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section					N24/0	17999			N24/017999
Aluminium Filtered	NT2_47	ug/L	5	<5	<5	<5	NA	108	97
Arsenic Filtered	NT2_47	ug/L	1	<1	1.1	1	10	99	100
Cadmium Filtered	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	101	100
Chromium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	99
Cobalt Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	100	99
Copper Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	99	100
Gallium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	97
Iron Filtered	NT2_47	ug/L	5	<5	6.3	6.4	2	110	100
Lead Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	101	99
Manganese Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	107	97
Mercury - Filtered	NT2_44	ug/L	0.05	< 0.05	<0.05	<0.05	NA	104	103
Molybdenum Filtered	NT2_47	ug/L	1	<1	8.6	8.3	4	100	99
Nickel Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	100	99
Silver Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	98	101
Tin Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	98
Vanadium Filtered	NT2_47	ug/L	1	<1	1.8	1.8	0	102	99
Zinc Filtered	NT2_47	ug/L	1	<1	2.5	3.7	39	100	98
Aluminium Total	NT2_47	ug/L	5	<5	2100	2150	2	94	106
Arsenic Total	NT2_47	ug/L	1	<1	1.3	1.4	7	101	97
Cadmium Total	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	99	101
Chromium Total	NT2_47	ug/L	1	<1	2.5	2.5	0	105	97
Cobalt Total	NT2_47	ug/L	1	<1	<1	<1	NA	103	98
Copper Total	NT2_47	ug/L	1	<1	<1	<1	NA	103	98
Gallium Total	NT2_47	ug/L	1	<1	<1	<1	NA	101	99
Iron Total	NT2_47	ug/L	5	<5	1500	1520	1	91	110
Lead Total	NT2_47	ug/L	1	<1	<1	<1	NA	93	104
Manganese Total	NT2_47	ug/L	1	<1	18	19	5	104	99
Mercury - Total	NT2_44	ug/L	0.05	< 0.05	<0.05	<0.05	NA	88	117
Molybdenum Total	NT2_47	ug/L	1	<1	8.6	9.1	6	101	99
Nickel Total	NT2_47	ug/L	1	<1	2.1	2.2	5	104	98
Silver Total	NT2_47	ug/L	1	<1	<1	<1	NA	98	102
Tin Total	NT2_47	ug/L	1	<1	<1	<1	NA	99	100
Vanadium Total	NT2_47	ug/L	1	<1	4.3	4.4	2	104	98
Zinc Total	NT2_47	ug/L	1	<1	2.3	2.5	8	104	99

Analyte	Method	Units	LOR	Blank		Duplicates		Rec	overies
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section						18000			N24/018000
Aluminium Filtered	NT2_47	ug/L	5	<5	<5	<5	NA	108	98
Arsenic Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	99	101
Cadmium Filtered	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	101	101
Chromium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	101
Cobalt Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	100	100
Copper Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	99	101
Gallium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	102
Iron Filtered	NT2_47	ug/L	5	<5	<5	<5	NA	110	98
Lead Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	101	100
Manganese Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	107	101
Mercury - Filtered	NT2_44	ug/L	0.05	<0.05	<0.05	<0.05	NA	104	105
Molybdenum Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	100	102
Nickel Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	100	101
Silver Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	98	101
Tin Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	104	102
Vanadium Filtered	NT2_47	ug/L	1	<1	<1	<1	NA	102	101
Zinc Filtered	NT2_47	ug/L	1	<1	1.3	1	26	100	100
Aluminium Total	NT2_47	ug/L	5	<5	<5	<5	NA	94	104
Arsenic Total	NT2_47	ug/L	1	<1	<1	<1	NA	101	99
Cadmium Total	NT2_47	ug/L	0.1	<0.1	<0.1	<0.1	NA	99	101
Chromium Total	NT2_47	ug/L	1	<1	<1	<1	NA	105	98
Cobalt Total	NT2_47	ug/L	1	<1	<1	<1	NA	103	98
Copper Total	NT2_47	ug/L	1	<1	<1	<1	NA	103	99
Gallium Total	NT2_47	ug/L	1	<1	<1	<1	NA	101	99
Iron Total	NT2_47	ug/L	5	<5	<5	<5	NA	91	104
Lead Total	NT2 47	ug/L	1	<1	<1	<1	NA	93	99
Manganese Total	 NT2_47	ug/L	1	<1	<1	<1	NA	104	99
Mercury - Total	 NT2_44	ug/L	0.05	<0.05	<0.05	< 0.05	NA	88	93
Molybdenum Total	 NT2_47	ug/L	1	<1	<1	<1	NA	101	101
Nickel Total	 NT2_47	ug/L	1	<1	<1	<1	NA	104	99
Silver Total	NT2_47	ug/L	1	<1	<1	<1	NA	98	100
Tin Total	NT2_47	ug/L	1	<1	<1	<1	NA	99	99
Vanadium Total	NT2_47	ug/L	1	<1	<1	<1	NA	104	99
Zinc Total	NT2_47	ug/L	1	<1	<1	<1	NA	104	99

Analyte	Method	Units	LOR	Blank	Duplicates			Recoveries		
					Sample	Duplicate	RPD	LCS	Matrix Spike	
							%	%	%	

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

m

Dr Andrew Evans Inorganics, NMI (North Ryde) 10/09/2024

CERTIFICATE OF ANALYSIS

Work Order	: EB2429131	Page	: 1 of 2	
Client	: VISION ENVIRONMENT ANZ	Laboratory	Environmental Division B	risbane
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	OFFICE 3 165 AUCKLAND STREET	Address	: 2 Byth Street Stafford QL	D Australia 4053
	GLADSTONE 4680			
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: PoR August 2024	Date Samples Received	: 27-Aug-2024 10:45	anillon.
Order number	:	Date Analysis Commenced	: 28-Aug-2024	and the second second
C-O-C number	:	Issue Date	: 28-Aug-2024 15:45	HAC-MRA NATA
Sampler	:			HOC-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Don Sirimanne

Senior Biologist - Water

Position

Microbiology / Biology, Hume, ACT

Accreditation Category

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	POR1A	POR1B	POR2	POR3	FB5
		Samplir	ng date / time	20-Aug-2024 09:40	20-Aug-2024 09:40	20-Aug-2024 09:15	20-Aug-2024 09:26	20-Aug-2024 12:00
Compound	CAS Number	LOR	Unit	EB2429131-001	EB2429131-002	EB2429131-003	EB2429131-004	EB2429131-005
				Result	Result	Result	Result	Result
EP008CA: Chlorophyll a								
Chlorophyll a		0.02	µg/L	1.19	1.77	1.91	1.01	<0.02

Inter-Laboratory Testing

Analysis conducted by ALS Canberra, NATA accreditation no. 992.

(WATER) EP008CA: Chlorophyll a

QUALITY CONTROL REPORT

Work Order	: EB2429131	Page	: 1 of 3	
Client	: VISION ENVIRONMENT ANZ	Laboratory	: Environmental Division B	risbane
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	: OFFICE 3 165 AUCKLAND STREET GLADSTONE 4680	Address	2 Byth Street Stafford QL	D Australia 4053
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: PoR August 2024	Date Samples Received	: 27-Aug-2024	
Order number	:	Date Analysis Commenced	: 28-Aug-2024	A A A A A A A A A A A A A A A A A A A
C-O-C number	:	Issue Date	: 28-Aug-2024	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Don Sirimanne	Senior Biologist - Water	Microbiology / Biology, Hume, ACT

right solutions. right partner

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP008CA: Chlorophy	il a (QC Lot: 6017615)								
CA2405248-005	Anonymous	EP008: Chlorophyll a		0.02	µg/L	3.78	3.80	0.6	0% - 20%

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER	p-Matrix: WATER			Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP008CA: Chlorophyll a (QCLot: 6017615)								
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	90.6	85.0	113
EP008CA: Chlorophyll a (QCLot: 6017616)					·			
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	90.1	85.0	113

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

CERTIFICATE OF ANALYSIS

CLIENT : (HVEC) Vision Environment ANZ 3/165 Auckland St GLADSTONE QLD 4680 felicity@visionenvironment.com.au

ATTN: F Melville

Laboratory Reference: SSP0090106Client Order No.: MELVILLE_FQuote Number: 23IN1102_F MelvilleClient Batch Reference: POR August 2024Date Received: 27-Aug-2024Date Commenced: 29-Aug-2024Laboratory Number/s: SS24KN3351-SS24KN3355

Number of Samples:5Reason for Analysis:Environmental ResearchMethod/s of Analysis:13796 - Nitrogen (Ammonia) by Flow Injection Analysis
13798 - Nitrogen (Oxides) by Flow Injection Analysis
13799 - Phosphorus (Filterable Reactive) by Flow Injection Analysis
13800 - Phosphorus (Total) by Simultaneous Persulfate or Kjeldahl Digestion
13802 - Nitrogen (Total) by Simultaneous Persulfate Digestion
16628 - Total Organic Carbon by High Temperature Oxidation

SS24KN3351-SS24KN3355

Jane Pullar Laboratory Technician, Inorganic Chemistry 09-Sep-2024

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

EnquiriesJane PullarPhone(+61 7) 30962807Emailjane.pullar@health.qld.gov.au

34604-20550 Printed: 08:00 09-Sep-24 pjacc

39 Kessels Road Coopers Plains QLD 4108 AUSTRALIA PO Box 594 Archerfield QLD 4108 AUSTRALIA
 Phone
 (+61) 1800 000 FSS (377)

 Fax
 (+61 7) 3096 2977

 Email
 FSS@health.qld.gov.au

Client	Reference		POR1A	POR1B	POR2	POR3	
Sampl	Sample Type			Water	Water	Water	Water
Sampl	Sampling Time/Date			09:40 20-Aug-2024	09:40 20-Aug-2024	09:15 20-Aug-2024	09:26 20-Aug-2024
Sampl	e Description						
Method	Nutrients	Units	Reporting Limit	SS24KN3351	SS24KN3352	SS24KN3353	SS24KN3354
13796	Ammonia	mg/L as N	0.002	0.010	0.009	0.010	0.007
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	0.018	0.012	0.011	0.020
13798	Nitrogen Oxides	mg/L as N	0.002	0.048	0.034	0.032	0.059
13800	Total Phosphorus	mg/L as P	0.003	0.066	0.064	0.064	0.046
13802	Total Nitrogen	mg/L as N	0.02	0.29	0.29	0.24	0.26
16628	Total Organic Carbon as NPOC	mg/L as C	1	3	3	2	2
16628	Dissolved Organic Carbon as NPOC	mg/L as C	0.5	1.7	1.7	1.2	1.9

Client	Reference		FB5	
Sampl	е Туре	Water		
Sampl	ing Time/Date	12:00 20-Aug-2024		
Sampl	e Description			
Method	Nutrients	Units	Reporting Limit	SS24KN3355
13796	Ammonia	mg/L as N	0.002	0.002
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	< 0.002
13798	Nitrogen Oxides	mg/L as N	0.002	0.018
13800	Total Phosphorus	mg/L as P	0.003	< 0.003
13802	Total Nitrogen	0.02	< 0.02	
16628	Total Organic Carbon as NPOC	mg/L as C	1	< 1
16628	Dissolved Organic Carbon as NPOC	mg/L as C	0.5	< 0.5

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).

Australian Government

Department of Industry, Science and Resources

National Measurement Institute

REPORT OF ANALYSIS

				Page: 1 of 6		
				Report No. RN1447628		
Client	: VISION ENVIRONMENT PTY LTD	(QLD)	Job No.	: VISI05/241106		
	U3 / 165 AUCKLAND STREET		Quote No.	: QT-02093		
	GLADSTONE CENTRAL QLD 46	80	Order No.	:		
			Date Received	: 06-NOV-2024		
Attention	: FELICITY MELVILLE		Sampled By	: CLIENT		
Project Name	:					
Your Client Se	ervices Manager : Danny Slee		Phone	: 02 9449 0169		
Lab Reg No.	Sample Ref	Sample Des	cription			
N24/022612	POR1	SEAWATER	1/11/2024 9:34			
N24/022613	POR2A	SEAWATER	SEAWATER 1/11/2024 9:06			
N24/022614	POR2B	SEAWATER	1/11/2024 9:06			
N24/022615	POR3	SEAWATER	1/11/2024 9:48			

Lab Reg No.		N24/022612	N24/022613	N24/022614	N24/022615	
Date Sampled		01-NOV-2024	01-NOV-2024	01-NOV-2024	01-NOV-2024	
	Units					Method
Filtered Trace Elements by	ICP					
Aluminium Filtered	ug/L	10	14	6.9	8.3	NT2_47
Arsenic Filtered	ug/L	1.2	1.2	1.1	1.2	NT2_47
Cadmium Filtered	ug/L	< 0.1	< 0.1	<0.1	< 0.1	NT2_47
Chromium Filtered	ug/L	<1	<1	1.1	<1	NT2_47
Cobalt Filtered	ug/L	<1	<1	<1	<1	NT2_47
Copper Filtered	ug/L	<1	<1	<1	<1	NT2_47
Gallium Filtered	ug/L	<1	<1	<1	<1	NT2_47
Iron Filtered	ug/L	11	14	10	11	NT2_47
Lead Filtered	ug/L	<1	<1	<1	<1	NT2_47
Manganese Filtered	ug/L	<1	<1	<1	<1	NT2_47
Molybdenum Filtered	ug/L	12	12	11	12	NT2_47
Nickel Filtered	ug/L	<1	<1	<1	<1	NT2_47
Silver Filtered	ug/L	<1	<1	<1	<1	NT2_47
Tin Filtered	ug/L	<1	<1	<1	<1	NT2_47
Vanadium Filtered	ug/L	2.1	1.9	2.1	2.1	NT2_47
Zinc Filtered	ug/L	2.8	2	14	7.6	NT2_47
Filtered Mercury by CV-AA	IS					
Mercury - Filtered	ug/L	< 0.05	< 0.05	< 0.05	< 0.05	NT2_44
Total Recoverable Trace El	ements by ICP					
Aluminium Total	ug/L	3930	5000	4400	1910	NT2_47
Arsenic Total	ug/L	2	2.4	2.2	1.6	NT2_47
Cadmium Total	ug/L	< 0.1	<0.1	< 0.1	< 0.1	NT2_47
Chromium Total	ug/L	4.6	6.3	5.8	2.5	NT2_47
Cobalt Total	ug/L	<1	1.3	1.2	<1	NT2_47
Copper Total	ug/L	2.4	2.8	2.4	1.7	NT2_47
Gallium Total	ug/L	<1	1	1	<1	NT2_47
Iron Total	ug/L	2650	3640	3160	1340	NT2 47

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

Page: 2 of 6 Report No. RN1447628

Lab Reg No.		N24/022612	N24/022613	N24/022614	N24/022615	
Date Sampled		01-NOV-2024	01-NOV-2024	01-NOV-2024	01-NOV-2024	
	Units					Method
Total Recoverable Trace B	Elements by ICP					
Lead Total	ug/L	<1	1.1	<1	<1	NT2_47
Manganese Total	ug/L	34	47	40	17	NT2_47
Molybdenum Total	ug/L	11	11	11	11	NT2_47
Nickel Total	ug/L	3.7	4.6	4	1.9	NT2_47
Silver Total	ug/L	<1	<1	<1	<1	NT2_47
Tin Total	ug/L	<1	<1	<1	<1	NT2_47
Vanadium Total	ug/L	7.1	8.4	7.8	4.2	NT2_47
Zinc Total	ug/L	6.3	7.5	6.6	4.1	NT2_47
Total Recoverable Mercur	y by CV-AAS					
Mercury - Total	ug/L	< 0.05	< 0.05	<0.05	< 0.05	NT2_44
Dates						
Date extracted		19-NOV-2024	19-NOV-2024	19-NOV-2024	19-NOV-2024	
Date analysed		20-NOV-2024	20-NOV-2024	20-NOV-2024	20-NOV-2024	

N24/022612

- N24/022616

The Zinc results for F > T have been confirmed by repeat analysis.

emp an

Neela Iyengar, Analyst Inorganics - NSW Accreditation No. 198

20-NOV-2024

Lab Reg No.		N24/022612	N24/022613	N24/022614	N24/022615	
Date Sampled		01-NOV-2024	01-NOV-2024	01-NOV-2024	01-NOV-2024	
	Units					Method
Miscellaneous						
Suspended Solids - Total	mg/L	55	66	53	28	NW_S13
Dates	<u>.</u>					
Date extracted		12-NOV-2024	12-NOV-2024	12-NOV-2024	12-NOV-2024	
Date analysed		13-NOV-2024	13-NOV-2024	13-NOV-2024	13-NOV-2024	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 3 of 6

Report No. RN1447628

Lab Reg No.		N24/022612	N24/022613	N24/022614	N24/022615	
Date Sampled		01-NOV-2024	01-NOV-2024	01-NOV-2024	01-NOV-2024	
	Units					Method

Þ _____ ~

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

20-NOV-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

			Page: 4 of 6
			Report No. RN1447628
Client	: VISION ENVIRONMENT PTY LTD (QLD)	Job No.	: VISI05/241106
	U3 / 165 AUCKLAND STREET	Quote No.	: QT-02093
	GLADSTONE CENTRAL QLD 4680	Order No.	:
		Date Received	: 06-NOV-2024
Attention	: FELICITY MELVILLE	Sampled By	: CLIENT
Project Name	• :		
Your Client S	ervices Manager : Danny Slee	Phone	: 02 9449 0169
Lab Reg No.	Sample Ref	Sample Description	
N24/022616	FB5	SEAWATER 1/11/2024 12:00	

Lab Reg No.		N24/022616	
Date Sampled		01-NOV-2024	
	Units		Method
Filtered Trace Elements by	ICP		
Aluminium Filtered	ug/L	<5	NT2_47
Arsenic Filtered	ug/L	<1	NT2_47
Cadmium Filtered	ug/L	<0.1	NT2_47
Chromium Filtered	ug/L	<1	NT2_47
Cobalt Filtered	ug/L	<1	NT2_47
Copper Filtered	ug/L	<1	NT2_47
Gallium Filtered	ug/L	<1	NT2_47
Iron Filtered	ug/L	<5	NT2_47
Lead Filtered	ug/L	<1	NT2_47
Manganese Filtered	ug/L	<1	NT2_47
Molybdenum Filtered	ug/L	<1	NT2_47
Nickel Filtered	ug/L	<1	NT2_47
Silver Filtered	ug/L	<1	NT2_47
Tin Filtered	ug/L	<1	NT2_47
Vanadium Filtered	ug/L	<1	NT2_47
Zinc Filtered	ug/L	1.9	NT2_47
Filtered Mercury by CV-AA	IS		
Mercury - Filtered	ug/L	< 0.05	NT2_44
Total Recoverable Trace El	ements by ICP		
Aluminium Total	ug/L	<5	NT2_47
Arsenic Total	ug/L	<1	NT2_47
Cadmium Total	ug/L	<0.1	NT2_47
Chromium Total	ug/L	<1	NT2_47
Cobalt Total	ug/L	<1	NT2_47
Copper Total	ug/L	<1	NT2_47
Gallium Total	ug/L	<1	NT2_47
Iron Total	ug/L	<5	NT2_47
Lead Total	ug/L	<1	NT2_47
Manganese Total	ug/L	<1	NT2_47
Molybdenum Total	ug/L	<1	NT2_47

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 5 of 6 Report No. RN1447628

Lab Reg No.		N24/022616		
Date Sampled		01-NOV-2024		
	Units			Method
Total Recoverable Trace Eleme	nts by ICP			
Nickel Total	ug/L	<1		NT2_47
Silver Total	ug/L	<1		NT2_47
Tin Total	ug/L	<1		NT2_47
Vanadium Total	ug/L	<1		NT2_47
Zinc Total	ug/L	2.2		NT2_47
Total Recoverable Mercury by (CV-AAS			
Mercury - Total	ug/L	< 0.05		NT2_44
Dates				
Date extracted		19-NOV-2024		
Date analysed		20-NOV-2024		

0

Neela lyengar, Analyst Inorganics - NSW Accreditation No. 198

20-NOV-2024

Lab Reg No.		N24/022616	
Date Sampled		01-NOV-2024	
	Units		Method
Miscellaneous			
Suspended Solids - Total	mg/L	<2	NW_\$13
Dates			
Date extracted		12-NOV-2024	
Date analysed		13-NOV-2024	

D

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

20-NOV-2024

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

National Measurement Institute

Page: 6 of 6 Report No. RN1447628

Total = acid extractable elements

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) as received and tested.

Measurement Uncertainty is available upon request.

Note: Sampling date(s) have been provided by the client. The testing was undertaken at: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 Web: industry.gov.au/measurement

QUALITY ASSURANCE REPORT

Client:	VISION ENVIRONMENT PTY LTD (QLD)

QA Report No:

VISI05/241106

Matrix:

Water

Analyte	Method	Units	LOR	Blank		Duplicates		Reco	overies
					Sample	Duplicate	RPD	LCS	Matrix Spike
							%	%	%
Inorganics Section					N24/0	22615			N24/022615
Aluminium Filtered	NT2_47	ug/L	5	<5	NA	NA	NA	100	98
Arsenic Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	99	106
Cadmium Filtered	NT2_47	ug/L	0.1	<0.1	NA	NA	NA	100	96
Chromium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	105
Cobalt Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	104
Copper Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	104
Gallium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	101
Iron Filtered	NT2_47	ug/L	5	<5	NA	NA	NA	100	98
Lead Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	97
Manganese Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	98
Mercury - Filtered	NT2_44	ug/L	0.05	< 0.05	NA	NA	NA	105	96
Molybdenum Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	99	102
Nickel Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	101	104
Silver Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	95	100
Tin Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	97	96
Vanadium Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	107
Zinc Filtered	NT2_47	ug/L	1	<1	NA	NA	NA	100	103
Aluminium Total	NT2_47	ug/L	5	<5	NA	NA	NA	117	NA
Arsenic Total	NT2_47	ug/L	1	<1	NA	NA	NA	106	103
Cadmium Total	NT2_47	ug/L	0.1	<0.1	NA	NA	NA	103	98
Chromium Total	NT2_47	ug/L	1	<1	NA	NA	NA	111	102
Cobalt Total	NT2_47	ug/L	1	<1	NA	NA	NA	107	102
Copper Total	NT2_47	ug/L	1	<1	NA	NA	NA	107	101
Gallium Total	NT2_47	ug/L	1	<1	NA	NA	NA	106	101
Iron Total	NT2_47	ug/L	5	<5	NA	NA	NA	104	NA
Lead Total	NT2_47	ug/L	1	<1	NA	NA	NA	103	98
Manganese Total	NT2_47	ug/L	1	<1	NA	NA	NA	100	NA
Mercury - Total	NT2_44	ug/L	0.05	<0.05	NA	NA	NA	103	98
Molybdenum Total	NT2_47	ug/L	1	<1	NA	NA	NA	105	103
Nickel Total	NT2_47	ug/L	1	<1	NA	NA	NA	108	100
Silver Total	NT2_47	ug/L	1	<1	NA	NA	NA	104	101
Tin Total	NT2_47	ug/L	1	<1	NA	NA	NA	105	99
Vanadium Total	NT2_47	ug/L	1	<1	NA	NA	NA	110	103
Zinc Total	NT2_47	ug/L	1	<1	NA	NA	NA	106	101

		Blank		Duplicates		overies	
			Sample	Duplicate	RPD	LCS	Matrix Spike
					%	%	%
4				22616		100	N24/022616
ug/L	5	<5	NA	NA	NA	100	99
ug/L	1	<1	NA	NA	NA	99	99
ug/L	0.1	<0.1	NA	NA	NA	100	100
ug/L	1	<1	NA	NA	NA	100	99
ug/L	1	<1	NA	NA	NA	100	100
ug/L	1	<1	NA	NA	NA	100	100
ug/L	1	<1	NA	NA	NA	100	100
ug/L	5	<5	NA	NA	NA	100	98
ug/L	1	<1	NA	NA	NA	100	100
ug/L	1	<1	NA	NA	NA	100	98
ug/L	0.05	<0.05	NA	NA	NA	105	102
ug/L	1	<1	NA	NA	NA	99	100
ug/L	1	<1	NA	NA	NA	101	99
ug/L	1	<1	NA	NA	NA	95	103
ug/L	1	<1	NA	NA	NA	97	100
ug/L	1	<1	NA	NA	NA	100	99
ug/L	1	<1	NA	NA	NA	100	99
ug/L	5	<5	NA	NA	NA	117	98
ug/L	1	<1	NA	NA	NA	106	98
ug/L	0.1	<0.1	NA	NA	NA	103	99
ug/L	1	<1	NA	NA	NA	111	99
ug/L	1	<1	NA	NA	NA	107	98
ug/L	1	<1	NA	NA	NA	107	98
ug/L	1	<1	NA	NA	NA	106	98
ug/L	5	<5	NA	NA	NA	104	98
ug/L	1	<1	NA	NA	NA	103	101
ug/L	1	<1	NA	NA	NA	100	99
ug/L	0.05	<0.05	NA	NA	NA	103	108
ug/L	1	<1	NA	NA	NA	105	99
	1						98
	1						96
	1						101
	•						96
<u> </u>	-						96
	ug/L ug/L ug/L ug/L ug/L	ug/L 1 ug/L 1 ug/L 1 ug/L 1 ug/L 1	ug/L 1 <1 ug/L 1 <1	ug/L 1 <1 NA ug/L 1 <1	ug/L 1 <1 NA NA ug/L 1 <1	ug/L 1 <1 NA NA NA ug/L 1 <1	ug/L 1 <1 NA NA NA 108 ug/L 1 <1

Analyte	Method	Units	LOR	Blank		Duplicates	Recoveries			
					Sample Duplicate		RPD	LCS		
							%	%	%	

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

m

Dr Andrew Evans Inorganics, NMI (North Ryde) 20/11/2024

QUALITY ASSURANCE REPORT

VISION ENVIRONMENT PTY LTD (QLD) Client: VISI05/241106

QA Report No:

Matrix:

Water

Analyte	Method	Units	LOR	Blank		Duplicates		Recoveries		
					Sample Duplicate		RPD	LCS	Matrix Spike	
							%	%	%	
Inorganics Section					N24/022612				N24/022612	
0						-				
Suspended Solids - Total	NW_S13	mg/L	2	<2	54	55	2	86	NA	

LOR = Limit Of Reporting RPD = Relative Percent Difference LCS = Laboratory Control Sample NA = Not Applicable

Acceptable recoveries for the LCS and Matrix Spike are 80 - 120%.

Acceptable RPDs on duplicates is 30 % at concentrations more than 5 times LOR. Greater RPD may be expected at less than 5 times LOR.

#: Spike level is less than 50% of the sample's concentration, hence the recovery data is not reliable.

**: reference value not available

Signed:

Date:

April

Dr Andrew Evans Inorganics, NMI (North Ryde) 20/11/2024

CERTIFICATE OF ANALYSIS

Work Order	EB2438903	Page	: 1 of 2	
Client	: VISION ENVIRONMENT ANZ	Laboratory	Environmental Division Br	isbane
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	: OFFICE 3 165 AUCKLAND STREET	Address	: 2 Byth Street Stafford QLI	D Australia 4053
	GLADSTONE 4680			
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: POR November 2024	Date Samples Received	: 12-Nov-2024 12:00	antilup.
Order number	:	Date Analysis Commenced	: 14-Nov-2024	and the second s
C-O-C number	:	Issue Date	: 15-Nov-2024 09:01	Hac-MRA NATA
Sampler	: Anna Skillington			Hac-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			Accreditation No. 825
No. of samples received	: 5			Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Don Sirimanne

Senior Biologist - Water

Position

Microbiology / Biology, Hume, ACT

Accreditation Category

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	POR1	POR2 A	POR2 B	POR3	FB
	Sampling date / time			01-Nov-2024 09:34	01-Nov-2024 09:06	01-Nov-2024 09:06	01-Nov-2024 09:48	01-Nov-2024 12:00
Compound	CAS Number	LOR	Unit	EB2438903-001	EB2438903-002	EB2438903-003	EB2438903-004	EB2438903-005
				Result	Result	Result	Result	Result
EP008CA: Chlorophyll a								
Chlorophyll a		0.02	µg/L	2.36	1.05	1.68	1.80	<0.02

Inter-Laboratory Testing

Analysis conducted by ALS Canberra, NATA accreditation no. 992.

(WATER) EP008CA: Chlorophyll a

QUALITY CONTROL REPORT

Work Order	: EB2438903	Page	: 1 of 3	
Client	: VISION ENVIRONMENT ANZ	Laboratory	: Environmental Division Bri	sbane
Contact	: FELICITY MELVILLE	Contact	: Kelly Schafer	
Address	: OFFICE 3 165 AUCKLAND STREET GLADSTONE 4680	Address	: 2 Byth Street Stafford QLD) Australia 4053
Telephone	:	Telephone	: +61 7 4978 7944	
Project	: POR November 2024	Date Samples Received	: 12-Nov-2024	
Order number	:	Date Analysis Commenced	: 14-Nov-2024	
C-O-C number	:	Issue Date	15-Nov-2024	
Sampler	: Anna Skillington			HAC-MRA NATA
Site	:			
Quote number	: BN/133/19 V4 PCIMP			The Column
No. of samples received	: 5			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 5			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Don Sirimanne	Senior Biologist - Water	Microbiology / Biology, Hume, ACT

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)		
EP008CA: Chlorophy	EP008CA: Chlorophyll a (QC Lot: 6187403)										
EB2438890-062	Anonymous	EP008: Chlorophyll a		0.02	µg/L	<0.02	<0.02	0.0	No Limit		

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
		Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP008CA: Chlorophyll a (QCLot: 6187403)								
EP008: Chlorophyll a		0.02	µg/L	<0.02	200 µg/L	95.2	85.0	113

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

• No Matrix Spike (MS) or Matrix Spike Duplicate (MSD) Results are required to be reported.

CERTIFICATE OF ANALYSIS

CLIENT : (HVEC) Vision Environment ANZ 3/165 Auckland St GLADSTONE QLD 4680 felicity@visionenvironment.com.au

ATTN: Felicity Melville

Laboratory Reference: SSP0091261Client Order No.: MELVILLE_FQuote Number: 23IN1102_F MelvilleClient Batch Reference: POR November 2024Date Received: 12-Nov-2024Date Commenced: 18-Nov-2024Laboratory Number/s: SS24KN5138-SS24KN5142

Number of Samples : 5

Reason for Analysis : Environmental research

- Method/s of Analysis : 13796 Nitrogen (Ammonia) by Flow Injection Analysis 13798 - Nitrogen (Oxides) by Flow Injection Analysis 13799 - Phosphorus (Filterable Reactive) by Flow Injection Analysis 13800 - Phosphorus (Total) by Simultaneous Persulfate or Kjeldahl Digestion
 - 13802 Nitrogen (Total) by Simultaneous Persulfate Digestion
 - 16628 Total Organic Carbon by High Temperature Oxidation

SS24KN5138-SS24KN5142

Matthew Cross Laboratory Technician, Inorganic Chemistry 22-Nov-2024

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, storad or transported).

Enquiries Matthew Cross Phone (+61 7) 3096 2805 Email matthew.cross@health.gld.gov.au

34715-02883 Printed: 09:02 22-Nov-24 mwcp1

39 Kessels Road Coopers Plains QLD 4108 AUSTRALIA PO Box 594 Archerfield QLD 4108 AUSTRALIA Phone (+61) 1800 000 FSS (377) Fax (+61 7) 3096 2977 Email FSS@health.qld.gov.au

Client Reference Sample Type Sampling Time/Date			POR1	POR2A	POR2B	POR3 Seawater 09:48 01-Nov-2024		
			Seawater	Seawater	Seawater			
			09:34 01-Nov-2024	09:06 01-Nov-2024	09:06 01-Nov-2024			
Sample Description								
Method	Nutrients	Units	Reporting Limit	SS24KN5138	SS24KN5139	SS24KN5140	SS24KN5141	
13796	Ammonia	mg/L as N	0.002	0.011	0.008	0.007	< 0.002	
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	0.012	0.010	0.011	0.009	
13798	Nitrogen Oxides	mg/L as N	0.002	0.018	0.020	0.024	0.020	
13800	Total Phosphorus	mg/L as P	0.003	0.044	0.050	0.048	0.030	
13802	Total Nitrogen	mg/L as N	0.02	0.21	0.24	0.23	0.17	
16628	Total Organic Carbon as NPOC	mg/L as C	1	2	2	2	1	
16628	Dissolved Organic Carbon as NPOC	mg/L as C	0.5	1.2	0.9	1.1	1.3	

Client	FB5 Seawater 12:00 01-Nov-2024 SS24KN5142			
Sampl				
Sampl				
Sampl Method				
13796	Ammonia	mg/L as N	0.002	< 0.002
13799	Filterable Reactive Phosphorus	mg/L as P	0.002	< 0.002
13798	Nitrogen Oxides	mg/L as N	0.002	< 0.002
13800	Total Phosphorus	mg/L as P	0.003	< 0.003
13802	Total Nitrogen	mg/L as N	0.02	< 0.02
16628	Total Organic Carbon as NPOC	mg/L as C	1	< 1.0
		mg/L as C	0.5	< 0.5

This report overrides all previous reports. The results relate solely to the sample/s as received and are limited to the specific tests undertaken as listed on the report. The results on this report are confidential and are not to be used or disclosed to any other person or used for any other purpose, whether directly or indirectly, unless that use is disclosed or the purpose is expressly authorised in writing by Queensland Health and the named recipient on this report. To the fullest extent permitted by law, Queensland Health will not be liable for any loss or claim (including legal costs calculated on an indemnity basis) which arise because of (a) problems related to the merchantability, fitness or quality of the sample/s, or (b) any negligent or unlawful act or omissions by Queensland Health that is connected with any activities or services provided by Queensland Health under this agreement (including the timing and/or method under which the sample/s were taken, stored or transported).