

# Monitoring of Maintenance Dredging Plumes – Gladstone Harbour, November and December 2018 - Final Report

Reference: R.B23483.001.04.DredgePlumeFinal.docx Date: April 2019 Confidential

## **Document Control Sheet**

|                                                                                                                             | Document:                                                                                                                                                                                                                | R.B23483.001.04.DredgePlumeFinal.docx                                                                          |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| BMT Eastern Australia Pty Ltd<br>Level 8, 200 Creek Street<br>Brisbane Qld 4000<br>Australia<br>DO Box 202 Spring Hill 4004 | Title:                                                                                                                                                                                                                   | Monitoring of Maintenance Dredging<br>Plumes – Gladstone Harbour, November<br>and December 2018 - Final Report |  |  |  |  |  |  |  |
| PO Box 203, Spring Hill 4004                                                                                                | Project Manager:                                                                                                                                                                                                         | Paul Guard                                                                                                     |  |  |  |  |  |  |  |
| Tel: +61 7 3831 6744<br>Fax: + 61 7 3832 3627                                                                               | Author:                                                                                                                                                                                                                  | Paul Guard, Darren Richardson, Jessie<br>Cullen                                                                |  |  |  |  |  |  |  |
| ABN 54 010 830 421                                                                                                          | Client:                                                                                                                                                                                                                  | Gladstone Ports Corporation                                                                                    |  |  |  |  |  |  |  |
| www.bmt.org                                                                                                                 | Client Contact:                                                                                                                                                                                                          | Freddie Pastorelli                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                             | Client Reference:                                                                                                                                                                                                        |                                                                                                                |  |  |  |  |  |  |  |
| dredged material b                                                                                                          | A report detailing the effects of maintenance dredging and sea disposal of dredged material by the Trailing Suction Hopper Dredge (TSHD) Brisbane on ambient water quality at Port Curtis in November and December 2018. |                                                                                                                |  |  |  |  |  |  |  |

#### **REVISION/CHECKING HISTORY**

| <b>Revision Number</b> | Date       | Checked by |        | Issued by |     |
|------------------------|------------|------------|--------|-----------|-----|
| 0                      | 1/02/2019  | PAG        | DA D   | DLR       | M   |
| 1                      | 13/03/2019 |            | flumit |           | 140 |
| 2                      | 20/03/2019 |            | /      |           | U   |
| 3                      | 27/03/2019 |            |        |           |     |
| 4                      | 4/04/2019  |            |        |           |     |

#### DISTRIBUTION

| Destination                    |     | Revision |      |     |     |   |   |   |   |   |    |
|--------------------------------|-----|----------|------|-----|-----|---|---|---|---|---|----|
|                                | 0   | 1        | 2    | 3   | 4   | 5 | 6 | 7 | 8 | 9 | 10 |
| Gladstone Ports<br>Corporation | PDF | PDF      | Word | PDF | PDF |   |   |   |   |   |    |
| BMT File                       | PDF | PDF      | Word | PDF | PDF |   |   |   |   |   |    |
| BMT Library                    | PDF | PDF      |      | PDF | PDF |   |   |   |   |   |    |

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by BMT Eastern Australia Pty Ltd (BMT EA) save to the extent that copyright has been legally assigned by us to another party or is used by BMT EA under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of BMT EA. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

#### Third Party Disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by BMT EA at the instruction of, and for use by, our client named on this Document Control Sheet. It does not in any way constitute advice to any third party who is able to access it by any means. BMT EA excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report.



## **Executive Summary**

#### Background

Gladstone Ports Corporation (GPC) is responsible for the maintenance dredging of the Port of Gladstone which is undertaken by the Trailer Suction Hopper Dredge *Brisbane*. Dredged material is disposed at sea at the *East Banks Sea Disposal Site* (EBSDS) in accordance with sea dumping permits issued by the Department of the Environment and Energy (DOEE). Gladstone Harbour has been maintenance dredged since the mid 1970s.

Dredging, disposal of dredged sediments and the subsequent re-suspension of dredged sediments leads to short-term increases in suspended sediment concentrations, as has been documented for the Port of Gladstone maintenance dredging program. The National Assessment Guidelines for Dredging (NAGD) provides a basis for assessing potential dredging and disposal impacts. There are several components relevant to assessing potential sediment water quality impacts of dredging and disposal:

- Sediment quality assessments in accordance with the decision-tree set out in Section 4.2 of NAGD. This
  provides a basis to assess chemical constituents in dredged sediments. The first two steps in the decision
  tree involve an examination of existing information and chemical characterisation of sediments. For the
  Port of Gladstone, results to date showed dredged sediments did not exceed screening levels and
  background (i.e. do not pose an ecotoxicity risk), and therefore there is no requirement to assess other
  lines of evidence to determine suitability for dredged material disposal (i.e. bioavailability testing, toxicity,
  weight of evidence assessment).
- Assessments of potential impacts to receiving environment (Section 4.3 of NAGD). BMT WBM (2017) undertook a review of existing information and numerical modelling to characterise potential impacts of dredge plumes. It was concluded that dredging and dredged material disposal pose a low risk to receiving environments. In addition, GPC also undertook monitoring of metal and metalloid burdens in oyster tissues deployed at the EBSDS however this approach was found to be unsuitable for measuring dredge plume impacts.
- Monitoring of impacts (Section 4.4 of NAGD). In order to satisfy the request from the Technical Advisory and Consultative Committee (TACC) to gather further results and evidence to test these predictions of BMT WBM (2017), it was recommended that monitoring be undertaken to validate modelling and to test the following impact hypotheses which are stated and embedded in GPC's Long-term Maintenance Dredging Management Plan:
  - 'Sediments generated during dredging and disposal do not subsequently reach sensitive areas in amounts that would be harmful to the ecological value and amenity of the area'.
  - 'Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur.'

As a substitute for oyster tissue monitoring, and to improve the understanding of dredging and disposal impacts, the Technical Advisory and Consultative Committee recommended that environmental assessments be carried out to assess dredging and disposal impacts in accordance with NAGD. This report describes monitoring works undertaken in accordance with Section 4.4.2 of NAGD to determine the spatial extent and temporal patterns of chemical constituents generated by maintenance dredging and dredged material disposal. Together with other complementary assessments undertaken by GPC (i.e. modelling of turbidity and sediment



deposition, monitoring of benthic macroinvertebrates at the DMPA), the present study provides a basis to assess dredging and disposal-related impacts in Port Curtis in line with NAGD, and the need or otherwise further assessments.

#### Approach

Sampling was conducted during neap tides and calm weather, therefore providing a conservative basis to distinguish dredging and disposal plumes from background. The monitoring consisted of a baseline water quality assessment prior to the dredging and monitoring of plumes during dredging and disposal operations (November - December 2018).

Monitoring focused on suspended sediments, which is the key stressor generated by dredging and disposal. Monitoring of sediment plumes was undertaken at five locations; Wild Cattle Cutting, Golding Cutting, Gatcombe Channel, Jacobs Channel and EBSDS. The timing of the sampling during different tidal stages (ebb and flood tides) considered the plume direction most likely to affect nearby sensitive receptor sites. An Acoustic Doppler Current Profiler (ADCP) was used to infer turbidity and TSS from the backscatter calibrated from field samples throughout the water column along transects of the dredge plumes. Turbidity and TSS concentrations were also measured through the water column to calibrate ADCP measurements.

The monitoring program also examined the concentrations of metals, metalloids and nutrients in dredge plumes. These parameters do not occur in high concentrations in dredged sediments and therefore are not considered to represent key stressors in the context of dredging and disposal activities. Monitoring was undertaken at three locations; Jacobs Channel, Gatcombe Head and EBSDS. These three locations occur near sensitive receptors and, in the case of Jacobs Channel, contain the highest proportions of silty sediments (and associated contaminants) in maintenance dredged areas.

#### **Sediment Plume Measurements**

TSS concentrations of over 57 mg/L and turbidity levels over 95 NTU were measured near the seabed at Jacobs Channel during dredge overflow. Dredge plumes at all other monitoring sites had low TSS (<25 mg/L) and turbidity (<20 NTU) values. At all sites, plume dispersion was rapid and measured sediment concentrations generally returned to background concentration within 1.5 hours. None of the measured plumes advected over sensitive receptor locations during the monitoring period. These results were consistent with numerical modelling which suggests that suspended sediment plumes follow dredged channels and represent short-lived features.

#### Water Quality Impacts

Temperature, salinity, pH and dissolved oxygen were consistent throughout the water column at all locations and similar between baseline and plume monitoring. Phytoplankton (chlorophyll *a*) concentrations were consistently low in both baseline and test samples. Thus, algal blooms were not evident and are not expected to occur as a result of the maintenance dredging. Furthermore, there is no evidence that dredging lead to dissolved oxygen suppression or created acidic conditions.

Nutrient concentrations were: (i) lower than recorded by BMT WBM (2014; 2015); and (ii) generally similar between test (dredge/disposal) and baseline samples. The exception was a short-term increase in total phosphorus and ammonia concentration in the dredge plume at the Jacobs Channel dredge site, which were near background levels within 30-60 minutes of dredging. A further increase in total phosphorus and suspended solids concentrations was observed at the Jacobs Channel dredge site at the completion of

monitoring two hours after dredging, most likely in response to sediment resuspension processes. Concentrations of bioavailable nutrient species (ortho-phosphorus, nitrogen oxides) were similar between baseline and test samples at all sites.

Dredging activities led to temporary (measured in 10's of minutes) increases in the concentrations of several metals/metalloids in the water column, especially at Jacobs Channel. Concentrations of total metals/metalloids at all dredge and disposal sites rapidly declined over time (measured in 10s of minutes). In accordance with ANZECC/ARMCANZ (2018), the dissolved (unfiltered) fraction was compared with guideline values, as *"it is generally the dissolved fraction that is bioavailable rather than any particulate forms"*. Concentrations of dissolved metals and metalloids were typically either below the laboratory detection limits or below their respective ANZECC/ARMCANZ (2018) default guideline values<sup>1</sup> in both test and baseline samples. The exception was dissolved copper at Jacobs Channel, which was above the ANZECC/ARMCANZ (2018) default guideline value of 1.3 mg/L in one test sample and one background sample (both 2 mg/L). These two samples were tagged 'as suspect' as total copper concentrations were less than the dissolved fraction, as can occur at concentrations near the laboratory detection limit. In any case, the concentration of dissolved copper in all test samples at this location were within the range of background, which does not suggest a dredging effect.

Overall, these results agree with the findings of modelling predictions and previous field investigations that maintenance dredging and disposal creates short term (measured in 10's to 100's of minutes) changes to water quality conditions. Measured changes to water quality were short-term and of low intensity, and highly unlikely to cause detectable effects to sensitive ecological receptors. Plumes created by maintenance dredging and disposal are transient features (measured in 10s of minutes) that disperse between dredge runs (time between runs measured in hours of greater) and are therefore highly unlikely to cause cumulative water quality impacts to sensitive ecological receptors.

As the results of the present study therefore suggest that dredging and disposal plumes do not lead to impairment to environmental quality, it therefore it does not trigger the need for Stage 3 testing in accordance with the monitoring framework set out in Section 4.4.2 of NAGD. The study further proved the hypothesis that sediments generated during dredging and disposal do not subsequently reach sensitive areas in amounts that would be harmful to the ecological value and amenity of the area' and 'Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur.' While not required under NAGD, it is suggested that: (i) major changes to dredging practices should trigger the need for further testing; (ii) to better understand the bioavailability of metals from sources other than dredging, it is suggested that similar plume assessments could be conducted following flood events.



<sup>&</sup>lt;sup>1</sup> 95% species protection level

## Contents

| Exe | ecutiv | e Sumn  | nary                                                                  | i  |
|-----|--------|---------|-----------------------------------------------------------------------|----|
| 1   | Intr   | oductio | n                                                                     | 1  |
|     | 1.1    | Backgr  | round                                                                 | 1  |
|     | 1.2    | Study C | Objectives                                                            | 2  |
|     | 1.3    | The Dr  | edging Process                                                        | 2  |
| 2   | Met    | hodolog | ду                                                                    | 5  |
|     | 2.1    | Dredge  | e Plume Monitoring                                                    | 5  |
|     |        | 2.1.1   | General Approach                                                      | 5  |
|     |        | 2.1.2   | Baseline Measurements                                                 | 5  |
|     |        | 2.1.3   | Test (During and Following Dredging) Measurements                     | 6  |
|     |        | 2.1.3.1 | Survey Design                                                         | 6  |
|     |        | 2.1.3.2 | Sampling Procedure                                                    | 6  |
|     | 2.2    | Data Pi | rocessing                                                             | 10 |
|     |        | 2.2.1   | ADCP Data Processing                                                  | 10 |
|     |        | 2.2.2   | ADCP Data Calibration                                                 | 10 |
|     |        | 2.2.2.1 | Calibration, Turbidity (NTU) to TSS                                   | 10 |
|     |        | 2.2.3   | Calibration, Backscatter to TSS                                       | 11 |
|     | 2.3    | Water S | Sample Data Processing                                                | 11 |
|     |        | 2.3.1   | QA/QC Samples                                                         | 11 |
|     | 2.4    | Presen  | tation of Results                                                     | 12 |
|     |        | 2.4.1   | ADCP Data                                                             | 12 |
| 3   | Res    | ults    |                                                                       | 14 |
|     | 3.1    | Dredgir | ng at Jacobs Channel, Ebb Tide on 29 <sup>th</sup> November 2018      | 14 |
|     |        | 3.1.1   | Plume Monitoring                                                      | 14 |
|     |        | 3.1.2   | Water Quality                                                         | 16 |
|     |        | 3.1.2.1 | Water Quality Profiles                                                | 16 |
|     |        | 3.1.2.2 | Water Quality Grab Samples                                            | 18 |
|     | 3.2    | Dredgir | ng at Wild Cattle Cutting, Ebb Tide on 30 <sup>th</sup> November 2018 | 20 |
|     |        | 3.2.1   | Plume Monitoring                                                      | 20 |
|     |        | 3.2.2   | Water Quality                                                         | 22 |
|     |        | 3.2.3   | Plume Monitoring                                                      | 22 |
|     |        | 3.2.4   | Water Quality                                                         | 24 |
|     | 3.3    | Dredgir | ng at Gatcombe Channel, Ebb Tide on 2 <sup>nd</sup> December 2018     | 24 |
|     |        | 3.3.1   | Plume Monitoring                                                      | 24 |
|     |        |         |                                                                       |    |



|            |       | 3.3.2   | Water Quality                                                                               | 26  |  |  |  |  |
|------------|-------|---------|---------------------------------------------------------------------------------------------|-----|--|--|--|--|
|            |       | 3.3.2.1 | Water Quality Profiles                                                                      | 26  |  |  |  |  |
|            |       | 3.3.2.2 | Water Quality Grab Samples                                                                  | 28  |  |  |  |  |
|            | 3.4   | Placer  | ment at EBSDS, Flood Tide on 2 <sup>nd</sup> December 2018                                  | 30  |  |  |  |  |
|            |       | 3.4.1   | Plume Monitoring                                                                            | 30  |  |  |  |  |
|            |       | 3.4.2   | Water Quality                                                                               | 32  |  |  |  |  |
|            |       | 3.4.2.1 | Water Quality Profiles                                                                      | 32  |  |  |  |  |
|            |       | 3.4.2.2 | Water Quality Grab Samples                                                                  | 33  |  |  |  |  |
|            | 3.5   | Water   | Sample QA/QC Assessment                                                                     | 36  |  |  |  |  |
|            |       | 3.5.1   | Field Blanks                                                                                | 36  |  |  |  |  |
|            |       | 3.5.2   | Trip Blanks                                                                                 | 36  |  |  |  |  |
|            |       | 3.5.3   | Intra-lab and Inter-lab Duplicates                                                          | 36  |  |  |  |  |
| 4          | Disc  | ussio   | n                                                                                           | 39  |  |  |  |  |
|            | 4.1   | Turbid  | Plumes at Sensitive Ecological Receptor Sites                                               | 39  |  |  |  |  |
|            |       | 4.1.1   | Neap Tides                                                                                  | 39  |  |  |  |  |
|            |       | 4.1.2   | Spring Tides                                                                                | 39  |  |  |  |  |
|            | 4.2   | Other   | Water Quality Parameters                                                                    | 40  |  |  |  |  |
|            |       | 4.2.1   | Physical Parameters                                                                         | 40  |  |  |  |  |
|            |       | 4.2.2   | Nutrients                                                                                   | 40  |  |  |  |  |
|            |       | 4.2.3   | Metals and Metalloids                                                                       | 41  |  |  |  |  |
|            | 4.3   | Recon   | nmendations                                                                                 | 42  |  |  |  |  |
| 5          | Con   | clusio  | n                                                                                           | 43  |  |  |  |  |
| 6          | Refe  | rence   | S                                                                                           | 45  |  |  |  |  |
| App        | endix |         | Water Samples, TSS Analysis                                                                 | A-1 |  |  |  |  |
| App        | endix | B       | Dredging at Jacobs Channel 29 <sup>th</sup> November 2018                                   | B-1 |  |  |  |  |
| App        | endix | C I     | Dredging at Wild Cattle Cutting, 30 <sup>th</sup> November 2018                             | C-1 |  |  |  |  |
| App        | endix | D       | Dredging at Golding Cutting, 1 <sup>st</sup> December 2018                                  | D-1 |  |  |  |  |
| Арр        | endix | EI      | Dredging at Gatcombe Channel, 2 <sup>nd</sup> December 2018                                 | E-1 |  |  |  |  |
| App        | endix | FI      | Placement at EBSD                                                                           | F-1 |  |  |  |  |
| App        | endix | GI      | Backscatter – TSS Calibration                                                               | G-1 |  |  |  |  |
| Арр        | endix |         | Baseline water quality results, Golding Cutting and Wild<br>Cattle Cutting, 3 December 2018 | H-1 |  |  |  |  |
| Appendix I |       |         | Laboratory Raw Data                                                                         |     |  |  |  |  |



## **List of Figures**

| Figure 1-1  | TSHD Brisbane Dredging in APLNG Swing Basin             | 4  |
|-------------|---------------------------------------------------------|----|
| Figure 2-1  | Water Quality Measurement Sites and Sensitive Receptors | 9  |
| Figure 2-2  | TSS / Turbidity Relationship                            | 11 |
| Figure 2-3  | Example Figure                                          | 13 |
| Figure 3-1  | Dredging at Jacobs Channel – Ebb Tide                   | 14 |
| Figure 3-2  | Dredging at Jacobs Channel – Ebb Tide                   | 15 |
| Figure 3-3  | Dredging at Jacobs Channel – Ebb Tide                   | 15 |
| Figure 3-4  | Dredging at Jacobs Channel – Ebb Tide                   | 16 |
| Figure 3-5  | Turbidity profiles- Jacobs Channel                      | 17 |
| Figure 3-6  | Dredging at Wild Cattle Cutting – Ebb Tide              | 20 |
| Figure 3-7  | Dredging at Wild Cattle Cutting – Ebb Tide              | 21 |
| Figure 3-8  | Dredging at Wild Cattle Cutting – Ebb Tide              | 21 |
| Figure 3-9  | Dredging at Golding Cutting – Ebb Tide                  | 22 |
| Figure 3-10 | Dredging at Golding Cutting – Ebb Tide                  | 23 |
| Figure 3-11 | Dredging at Golding Cutting – Ebb Tide                  | 23 |
| Figure 3-12 | Dredging at Golding Cutting – Ebb Tide                  | 24 |
| Figure 3-13 | Dredging at Gatcombe Channel – Ebb Tide                 | 25 |
| Figure 3-14 | Dredging at Gatcombe Channel – Ebb Tide                 | 25 |
| Figure 3-15 | Dredging at Gatcombe Channel – Ebb Tide                 | 26 |
| Figure 3-16 | Turbidity profiles - Gatcombe Channel (ebb)             | 28 |
| Figure 3-17 | Disposal at EBSDS                                       | 30 |
| Figure 3-18 | Disposal at EBSDS                                       | 31 |
| Figure 3-19 | Disposal at EBSDS                                       | 31 |
| Figure 3-20 | Turbidity profiles- EBSDS                               | 33 |

## **List of Tables**

| Table 2-1 | Water Quality Sampling Equipment and Procedures        | 8  |
|-----------|--------------------------------------------------------|----|
| Table 3-1 | Water quality profile summary-Jacobs Channel           | 17 |
| Table 3-2 | Water quality results - Jacobs Channel                 | 19 |
| Table 3-3 | Water quality profile summary - Gatcombe Channel (ebb) | 27 |
| Table 3-4 | Water quality results - Gatcombe Channel (ebb)         | 29 |
| Table 3-5 | Water quality profile summary- EBSDS                   | 32 |



| QA/QC – Blanks and RSD Calculations for Field Duplicates | 37                                                                                     |
|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| QA/QC – RPD Calculations for Field Triplicates           | 38                                                                                     |
| Water quality results Golding Cutting                    | H-2                                                                                    |
| Water quality results Wild Cattle Cutting                | H-3                                                                                    |
|                                                          | QA/QC –RPD Calculations for Field Triplicates<br>Water quality results Golding Cutting |



## **1** Introduction

### 1.1 Background

Gladstone Ports Corporation (GPC) is responsible for the maintenance dredging of the Port of Gladstone. Maintenance dredging is undertaken on an approximately annual basis by the *TSHD Brisbane*. The dredged material is placed at sea within the East Banks Sea Disposal Site (EBSDS) in accordance with sea dumping permits issued by the Department of the Environment (DOEE).

The conservation goals relevant to the maintenance dredging project are as follows:

- Ensure that maintenance dredging activities do not impact on the Outstanding Universal Value (OUV) of the Great Barrier Reef World Heritage Area (GBRWHA). This will be achieved by minimising or avoiding impacts to marine ecological values (Species, communities and habitats) supported in the Gladstone Harbour which contribute to the OUV of the GBRWHA.
- Undertake appropriate marine ecological condition monitoring to inform adaptive management actions that aim to minimise or avoid impacts to marine ecological components, process and services. This monitoring should coordinate with other broader national, GBR-wide and regional programs, in particular Port Curtis Integrated Monitoring Program (PCIMP) and the Gladstone Healthy Harbour Partnership (GHHP).

The Technical Advisory and Consultative Committee recommended that environmental assessments be carried out to assess dredging and disposal impacts in accordance with National Assessment Guidelines for Dredging (NAGD).

There are several components relevant to assessing potential sediment water quality impacts of dredging and disposal:

- Sediment quality assessments in accordance with the decision-tree set out in Section 4.2 of NAGD. This provides a basis to assess chemical constituents in dredged sediments. The first two steps in the decision tree involve an examination of existing information and chemical characterisation of sediments. Results to date indicate dredged sediments did not exceed screening levels and background (i.e. do not pose an ecotoxicity risk), and therefore there is no requirement to assess other lines of evidence to determine suitability for dredged material disposal (i.e. bioavailability testing, toxicity, weight of evidence assessment).
- Assessments of potential impacts to receiving environment (Section 4.3 of NAGD). BMT WBM (2018) undertook a review of existing information and numerical modelling to characterise potential impacts of dredge plumes. It was concluded that dredging and dredged material disposal pose a low risk to receiving environments. In addition, GPC also undertook monitoring of metal and metalloid burdens in oyster tissues deployed at the EBSDS however this approach was found to be unsuitable for measuring dredge plume impacts.
- Monitoring of impacts (Section 4.4 of NAGD). While developed to monitor the effects of dredge material placement, the process can be adapted to also consider dredging (loading) impacts. NAGD recommends that monitoring specifically considers:



- Changes to water quality conditions, including turbidity and any water quality toxicants, due to dredging and disposal.
- Changes to benthic communities due to smothering at the dredge disposal site. This is considered in a separate GPC study.

The conceptual process set out in Section 4.4.2 of NAGD consists of the following stages:

- Stage 1 Monitoring of physical processes (sediment movements).
- Stage 2 Chemical and biological measurements.
- Stage 3 Further testing if there is evidence of impairment to environmental quality.

The present study informs Stages 1 and 2 (specifically with regard to water quality issues only) and provides a basis to assess dredging and disposal-related impacts in Port Curtis in line with NAGD, and to determine the need or otherwise further assessments.

### 1.2 Study Objectives

The monitoring was carried out to test the following impact hypotheses:

'Sediments generated during dredging and disposal do not subsequently reach sensitive areas in amounts that would be harmful to the ecological value and amenity of the area'.

*Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur?*.

The objectives of this study are to:

- (1) Measure sediment and pollutant (metals, metalloids, nutrients) concentrations in plumes created during dredging and sediment disposal activities, and their degradation over time;
- (2) Determine whether sediment plumes created by dredging and disposal extend to sensitive marine communities such as seagrass and reef communities;
- (3) Determine whether concentrations of pollutants in dredge plumes at the loading and disposal sites occur at levels where toxic effects or algae blooms could occur, based on a comparison of data to water quality guideline values; and
- (4) Assess the need or otherwise for further testing in accordance with the NAGD monitoring framework.

Note that in the context of objective (3), the present study is intended to replace the discontinued oyster bioaccumulation monitoring program at EBSDS.

### 1.3 The Dredging Process

The TSHD *Brisbane* (Figure 1-1) is a 85 m long ocean-going vessel which performs maintenance and capital dredging works within the Port of Brisbane for around three months of the year and contract maintenance dredging services for other ports, including the Port of Gladstone, for the remainder.



The TSHD *Brisbane* is equipped with two trailing arm suction heads, on the port and starboard sides of the vessel, which are typically lowered and dragged along the seafloor, simultaneously dredging the bed sediments either side of the vessel as it progresses forward. The drag heads are lifted clear of the seabed when moving astern. To efficiently fill the hopper (volume 2,900 m<sup>3</sup>) with dredged material, the vessel is usually operated in an overflowing mode whereby the dredged sediments are concentrated within the hopper over time. A telescoping weir within the centre of the hopper can be elevated to maximise the retention of dredged material before discharge from the hopper occurs. Excess water and suspended sediments are ultimately discharged from the hopper via the weir to the underside of the keel, approximately five metres below the water line.

Depending upon the nature of sediments to be dredged, dredging to effectively fill the dredge hopper generally lasts between 1 and 1.5 hours, typically without any overflow from the hopper occurring in the first 15-20 minutes. Subsequently, a dredging overflow plume of turbid water is usually obvious as the overflow water and suspended sediments discharged from the underside of the keel are entrained to the water surface by the action of the vessel's propellers operating near the stern of the vessel as it moves ahead. This results in an obvious surface plume of dredged sediment astern of the TSHD Brisbane for the remainder of the dredging duration.

Typically, the turbid water plume produced by overflow dredging extends from the water surface through the full height of the water column as the overflow sediments settle astern of the dredger. The turbid plumes formed by dredging can be extremely variable both spatially and temporally depending upon such factors as the mode and track of the dredger, the prevailing current regime and the sediments being dredged. Following cessation of dredging the TSHD *Brisbane* typically delivers its load of dredged material to a the EBSDS. On arrival at the EBSDS the dredger typically slows to a speed of a few knots and the dredged sediment loaded within the hopper is deposited over the required placement area by opening a series of five valves set within the bottom of the hopper, allowing for gravitational settlement of dredged material from the vessel through the water column to the seafloor.





Figure 1-1 TSHD Brisbane Dredging in APLNG Swing Basin



## 2 Methodology

### 2.1 Dredge Plume Monitoring

#### 2.1.1 General Approach

The sampling program was designed to maximise the potential for detecting dredge plumes at sensitive receptor sites. In this regard:

- The present study monitored the behaviour of individual sediment plumes at loading and disposal locations in close proximity to known sensitive ecological receptor sites identified by BMT WBM (2014a). Five general locations were monitored (Figure 2-1):
  - Wild Cattle Cutting;
  - Golding Cutting;
  - Gatcombe Channel;
  - Passage Island (or Jacobs) Channel; and
  - EBSDS disposal location for maintenance dredged material, also known as the Dredged Material Placement Area (DMPA).
- Detailed investigations of the behaviour of physico-chemical parameters at a subset of these sites; as follows:
  - Gatcombe Channel;
  - Passage Island (or Jacobs) Channel; and
  - EBSDS.
- Sampling occurred during periods when ambient background turbidity would be lowest, thereby
  increasing the ability to detect dredge-generated turbidity. Background turbidity and suspended
  sediment concentrations are often high during average or spring tide conditions in Gladstone
  Harbour. Whilst turbid plumes would typically travel farthest during spring tide conditions, the
  ability to distinguish these plumes against elevated background concentrations would be severely
  limited. Therefore, small range neap tide conditions were targeted for the plume measurements.

The plume monitoring was planned to occur on either a flooding or ebbing tide (or both) for each of the five study locations depending on the location of sensitive marine communities (such as seagrass or corals) that would be potentially affected. The baseline water quality sampling was targeted for a mid-range tide to establish background levels during 'average' conditions in Gladstone Harbour.

#### 2.1.2 Baseline Measurements

The baseline water quality sampling was undertaken between the 29<sup>th</sup> of November and the 3<sup>rd</sup> of December 2018, around a neap low tide covering both ebb and flood flows. Measurements were collected from the five study locations, refer Figure 2-1. Baseline samples were collected at three depths:

• Depth A - 1-2 m from the surface.



- Depth B located >2 m below the surface and >1 m above the seabed.
- Depth C within 0.5-1 m from the seabed.

The following field measuring instrumentation and techniques were employed during the course of the baseline measurements:

- Water quality profiling using a YSI model 6600 water quality sonde of water turbidity, temperature, electrical conductivity, salinity, pH, and dissolved oxygen concentration.
- Water sampling for laboratory analysis of TSS, total and dissolved nutrients (Total N and P, nitrate + nitrite, ammonia, reactive phosphorus) and total Organic Carbon (TOC) for comparison with the Queensland Water Quality Guidelines 2009 (QWQG) values for enclosed coastal areas in the Central Coast Queensland region. All samples were also analysed for total and dissolved metals (Al, As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Ag, Zn) for comparison against the respective ANZECC/ARMCANZ (2018) marine trigger limits. Samples were collected from both the surface and near-bed.

#### 2.1.3 Test (During and Following Dredging) Measurements

#### 2.1.3.1 Survey Design

Water quality sampling was conducted at each of the five sites to characterise to characterise spatial and temporal changes in water quality during and following dredging and disposal activities. These are hereafter referred to as 'Test' measurements, in accordance with ANZECC/ARMCANZ (2018).

The survey design varied between the three sampling methods, as follows:

- ADCP measurements at each of the five sites, sampling was conducted along a single transect running perpendicular through the dredge plume. Sampling was conducted soon after when a visual plume was detected at the surface.
- In-situ water quality profiling at each of the five sites, measurements were collected through the water column at sites within and adjacent to the dredge plume. Measurements were collected at the dredge or disposal site at the following time intervals relative to the first visual observations of the dredge plume or commencement of overflow, whatever is first: 0, 15, 30, 60 and 120-minutes.
- Grab water quality sampling at three sites, grab samples were collected at the same five time intervals described for in-situ water quality profiling, at the aforementioned A, B and C depth horizons.

The sampling procedures for each of these survey methods is describing below.

#### 2.1.3.2 Sampling Procedure

All field measurements were conducted from a BMT crewed research vessel. The test measurements were undertaken during neap tides between the 29<sup>th</sup> of November and the 3<sup>rd</sup> of December 2018. During the test measurements, BMT communicated and co-ordinated measurement and sampling activities with GPC and the *TSHD Brisbane* via mobile telephone or VHF marine radio.



Sampling was undertaken in accordance with relevant international standards including ISO 5667-1:2006, ISO 5667-2:1991, and ISO 5667-3:2003, along with relevant Australian Standards including AS/NZS 5667.1:1998. Table 2-1 provides details on the sampling equipment and sampling and analysis procedures.

The potential water quality impacts of the turbid plumes were evaluated by water quality profiling measurements allied with grab water sample collection through the water column. The water quality profiling measurements at each site included those at the nearest sensitive marine communities before and after the specific dredging event.

The plume sediment concentrations and plume extents were defined in real-time using a vesselbased Teledyne RD Instruments 1200 kHz ADCP interfaced with differential and heading GPS allied with profiling water quality and optical backscatter instruments. Water quality profiling measurements from the YSI sonde included water temperature, electrical conductivity, salinity, dissolved oxygen, pH and turbidity.

Conversion of acoustic and optical backscatter concentrations in the dredge plumes to sediment concentrations in mg/L was achieved by the concurrent collection of multiple water samples at varying times and plume horizons at each site to allow calibration (samples will be collected at the top, middle and bottom of the water column). The samples were analysed for TSS concentration and selected samples (one at each of the five monitoring locations) were analysed for the particle size fractions of the suspended material. Refer to Section 2.2.2 for calibration procedures.

Plume samples were also collected and analysed for total and dissolved nutrients (dissolved – ammonia, nitrate, nitrite, FRP, total – N and P, TOC), total and dissolved metals (aluminium, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, zinc) and chlorophyll *a*. Intensive field sampling was undertaken at three locations – one in the inner harbour (Jacobs Channel), one in the outer harbour (Gatcombe or Golding Channel), and one at the East Banks DMPA. Samples were collected at the top, middle and bottom of the water column within the main body of the plume at intervals of 0, 15, 30, 60 and 120 minutes after the passage of the dredge (5 x 3 = 15 samples per monitoring session).



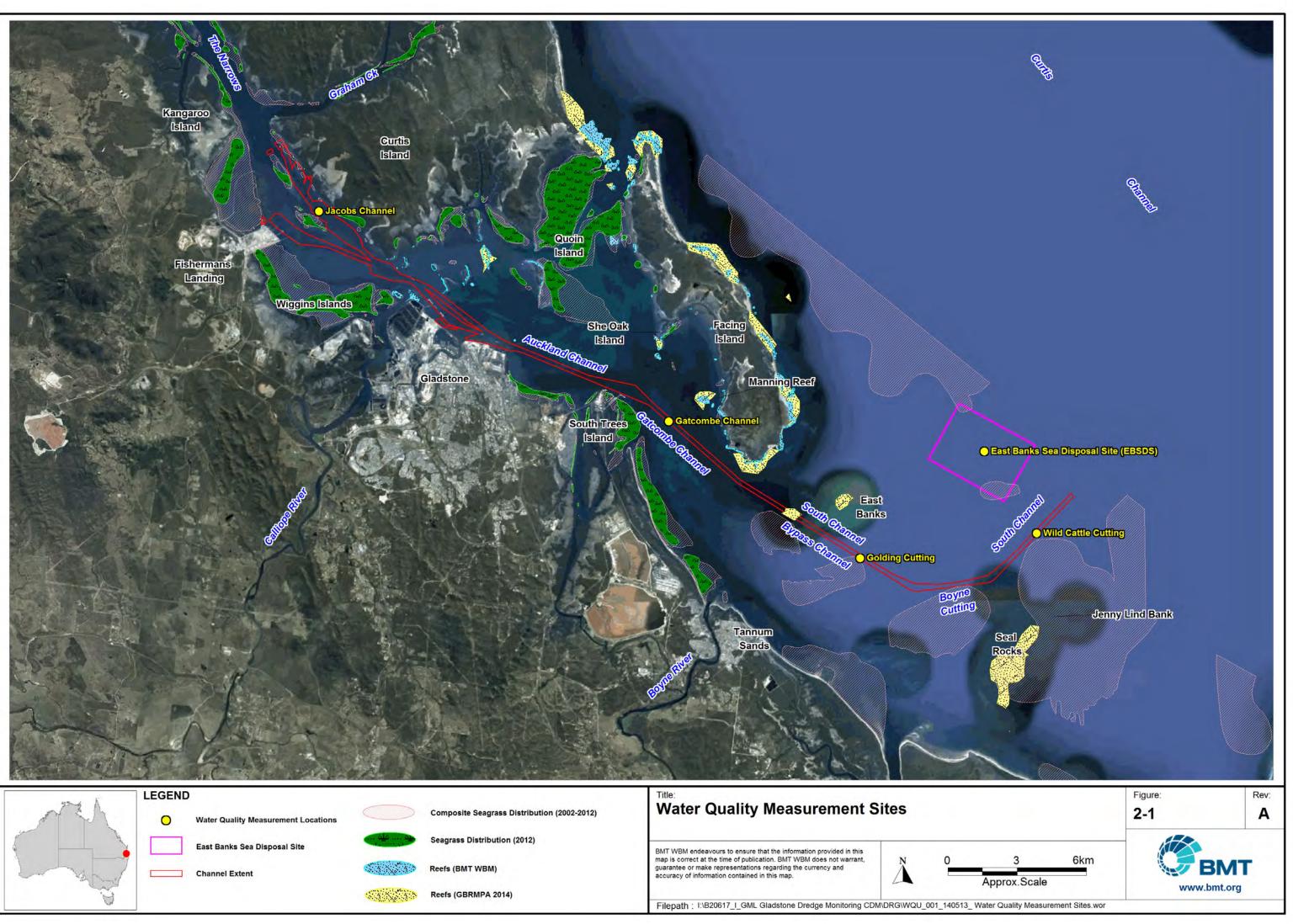
#### Methodology

| Methodology                              | Equipment                                                                                                       | Parameters measured                                                                                                                                                                                                                                                                                                                                                         | Sampling Procedure                                                                                                                                                                                                                                               | Data Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADCP<br>measurements                     | Downward facing vessel<br>mounted Model 1200 kHz<br>Teledyne RDI Acoustic<br>doppler current profiler<br>(ADCP) | Acoustic backscatter, calibrated<br>to estimate suspended sediment<br>concentrations                                                                                                                                                                                                                                                                                        | Transects were conducted<br>perpendicular and through the plume at<br>each site. This was used to estimate<br>suspended sediment concentrations in<br>two dimensions (vertical through water<br>column and along the horizontal<br>transect).                    | Refer to Section 2.2 for details.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| In-situ water quality profiling          | Yellow Stone Instruments<br>(YSI) EXO multi-parameter<br>water quality sonde                                    | Turbidity (NTU), water<br>temperature (°C), electrical<br>conductivity (mS/cm), salinity<br>(ppt), pH, and dissolved oxygen<br>concentration (mg/L and %<br>saturation), depth (m) and time                                                                                                                                                                                 | The multi-probe was slowly lowered<br>through the water column, from the<br>surface to the seabed, recording water<br>quality parameters, depth and time at<br>15 second intervals. Sampling was<br>conducted on the same transects as<br>the ADCP measurements. | Water quality profiles were generated in Microsoft<br>Excel to characterise changes in water quality<br>parameters through the water column.                                                                                                                                                                                                                                                                                                                         |
| Grab sampling for<br>laboratory analysis | Van Dorn Water Sampler                                                                                          | Total suspended solids (mg/L)<br>Nutrients - Total nitrogen and<br>phosphorus, nitrate + nitrite,<br>ammonia, ortho-phosphorus,<br>Total Organic Carbon (%)<br>Dissolved and total<br>metals/metalloids – aluminium,<br>arsenic, cadmium, chromium,<br>copper, iron, manganese,<br>mercury, nickel, silver, zinc (all<br>µg/L)<br>Particle size distribution (% by<br>mass) | The Van Dorn sampler was lowered<br>through the water column to collect<br>three separate samples at the three<br>depth horizons (surface, mid and near<br>bed). Sampling was conducted on the<br>same transects as the ADCP<br>measurements.                    | Water quality time-series were generated in Microsoft<br>Excel for detected parameters. Data were also<br>tabulated and compared with Queensland Water<br>Quality Guidelines 2009 (QWQG) values for enclosed<br>coastal areas in the Central Coast Queensland region.<br>Dissolved metals/metalloid concentrations were<br>compared against the respective ANZECC/ARMCANZ<br>(2018) default marine trigger limits for 95% species<br>protection level <sup>2</sup> . |

#### Table 2-1 Water Quality Sampling Equipment and Procedures

#### QA/QC

Refer to Section 2.2 for details regarding calibrations and data accuracy.


This instrument was calibrated in Brisbane prior to the site visit and the calibration was checked again once at site using appropriate calibration solutions. The instrument accuracy was checked regularly during the field program, and a final calibration was performed at the completion of the field program to check for any drift in parameters.

QA/QC procedures in accordance with the Department of Environment and Science (DES) Monitoring and Sampling Manual 2018. Sampling for nutrients and metals included collection of:

- Intra-laboratory duplicates to test for primary laboratory variation - 20% of samples for both baseline and plume monitoring;
- Inter-laboratory duplicates to test for laboratory variation in analyses - 10% of samples for both baseline and plume monitoring;
- Field blanks to test for potential sample contamination during sampling - One sample for each baseline and plume monitoring; and
- Rinsate blank to test for potential sample contamination from sampling equipment - One sample for each baseline and plume monitoring.



<sup>&</sup>lt;sup>2</sup> ANZECC/ARMCANZ (2018) refers to default guideline values for metals/metalloids outlined in ANZECC/ARMCANZ (2018) guidelines









## 2.2 Data Processing

#### 2.2.1 ADCP Data Processing

Processed ADCP measurements were used to remotely measure the suspended sediment in the water column with a sufficient resolution to provide a profile view of the suspended sediment associated with dredging.

ADCP measurements can be used to estimate suspended sediment concentrations throughout the water column, however an ADCP instrument does not directly measure TSS. The principle of ADCP operation is that a pulse of sound is propagated through the water column and is reflected / backscattered from suspended particles - such as suspended sediments. The Doppler shift of the backscattered acoustic signal is used to directly determine the water currents throughout the water column. The intensity of the backscatter echo can be translated into TSS values through a series of steps as detailed below.

Laboratory analysis of the TSS in water samples spanning a wide range of sediment concentrations provides the means to calibrate the handheld OBS turbidity profiling instrument. By correlating the TSS values with the Nephelometric Turbidity Units (NTU), recorded in the field by the OBS, the siteand date-specific NTU-TSS relationship can be determined.

The turbidity profiles measured with the OBS, once converted to TSS, are then used to derive a relationship between the ADCP acoustic signal backscatter intensity and TSS. The software package VISEA includes a built-in calibration module for this purpose which is based on acoustic theory. The calibration process requires information on water temperature and salinity at the site and various scaling factors and offsets for each of the four transducers.

The estimates of TSS obtained from the ADCP backscatter signal are typically plotted as a function of depth and chainage along each transect. TSS estimates are capped at a maximum value due to the uncertainty surrounding the backscatter–TSS relationship above that value. It should also be noted that due to its mounting and a measurement "blanking-distance", the ADCP was only able to resolve TSS profiles below a depth of approximately 1.5 m. The ADCP was also unable to estimate the TSS within approximately 1 m from the bed.

ADCP backscatter measurements are prone to occasional spikes/elevated values that are un-related to TSS in the water column. These spikes may arise due to a number of sources of interference, including bubbles generated near the surface by the dredge, survey vessel, 3<sup>rd</sup>-party vessel or other objects 'ensonified' in the water-column such as plankton, fish or seaweed. The data presented in this report has not been "cleaned" other than the TSS cap mentioned above.

#### 2.2.2 ADCP Data Calibration

#### 2.2.2.1 Calibration, Turbidity (NTU) to TSS

A total of 34 of the water samples analysed for TSS were and used to derive the NTU-TSS relationship of the OBS, a procedure detailed in Section 2.2. Refer to Appendix A for the tabulated TSS values and Figure 2-2 for the derived relationship. The relationship was derived using linear regression.



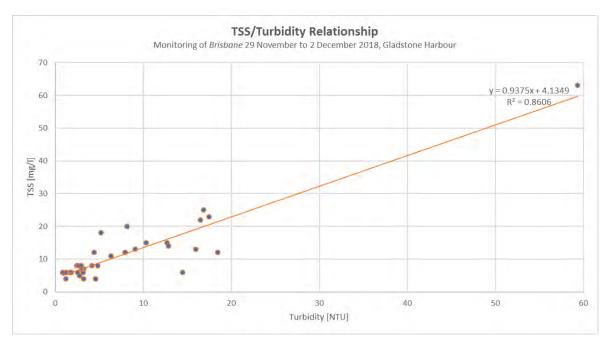



Figure 2-2 TSS / Turbidity Relationship

### 2.2.3 Calibration, Backscatter to TSS

The calibration was performed as outlined in Section 2.2 using the VISEA calibration module. Sufficient data were available to perform site specific calibrations for all monitored sites.

The calibration is deemed adequate for the purposes of this study and observations made using the ADCP are consistent with those made using the OBS, the analysis of collected water samples and what was observed visually on each measurement day. Refer to Appendix G for the calibration plots.

### 2.3 Water Sample Data Processing

Water samples were sent to the NATA accredited laboratories of Australian Laboratory Services (primary laboratory) and Envirolab (secondary laboratory) for analysis of nutrients and metals/metalloids. All laboratory LORs were either below or at their respective trigger limits where applicable.

The measured concentrations were assessed against the relevant QWQG (nutrients, TSS and chlorophyll a) and ANZECC/ARMCANZ (2018) (metals and metalloids) default guideline values (GVs) for marine waters (95% species protection level). As stated in ANZECC/ARMCANZ (2018), *"since it is generally the dissolved fraction that is bioavailable rather than any particulate forms, the fraction that passes through a 0.45 \mu m filter membrane is compared to the guideline value." Therefore, the dissolved fraction of metals and metalloids was used for comparison against the ANZECC/ARMCANZ (2018) GV.* 

#### 2.3.1 QA/QC Samples

Sampling for nutrients and metals included collection of QA/QC samples:

 Intra-laboratory duplicates to test for primary laboratory variation - 20% of samples for both baseline and plume monitoring;



- Inter-laboratory duplicates to test for laboratory variation in analyses 10% of samples for both baseline and plume monitoring;
- Field blanks on sampling equipment to test for potential sample contamination during sampling -One sample for each baseline and plume monitoring; and
- Trip blank in sample bottles to test for potential sample contamination during transport of samples - One sample for each baseline and plume monitoring.

An assessment of all QA/QC data was undertaken and the Relative Percent Difference between samples calculated for both intra- and inter- laboratory samples. The assessment criteria were as follows:

- Intra- and inter-laboratory duplicate samples should ideally agree within ±50%. It is, however, noted that this may not always the case, e.g. in case of concentrations measured close to the LOR. Small differences in concentrations close to the LOR can lead to relatively large changes in the RPD; and
- Field and trip blank sample concentrations should be at or near the detection limit of the method used.

### 2.4 Presentation of Results

#### 2.4.1 ADCP Data

Figure 2-3 is an example plot demonstrating how the sediment plume measurement results have been presented in this report. The plots are comprised of two components, an upper and a lower component. The upper component is a profile-view of the ADCP transect which depicts the TSS concentrations along the transect and down through the water column. The lower component depicts the depth averaged plume concentrations in plan-view along the transect.

The coloured circles in the upper component of Figure 2-3 depict the two OBS profiles performed during the transect. The colour of the circles represents the TSS concentration returned by the OBS which align with those returned by the ADCP. The OBS profiles are plotted directly onto the elevation-chainage axes. As the OBS instrument is lowered down through the water column, a process which can take over a minute, the monitoring vessel often drifts with the wind/currents and hence the chainage along the transect increases with depth. Hence the OBS profiles do not appear vertical. OBS profiles were undertaken on selected transects with the aim to obtain measurements over a broad range of turbidity values to facilitate ADCP data calibration.

The red 'x' plotted in the lower component of Figure 2-3 identifies the start of the ADCP transect which extends from left to right in the upper profile-view component of the plot. The timing of the measurement within the tidal cycle is depicted in the upper right hand corner of the plot (date shown on x-axis).

The extents of the nearest sensitive marine receptors are also plotted on the lower component of the plots. The patches of red diagonal stripes depict the composite seagrass distribution for 2002-2012 (Davies *et al.* 2013). The patches of dark green with black grass patterns depict the extents of



seagrass meadows as of 2012 (Davies *et al.* 2013). The patches of light blue with black dot patterns depict the extents of known reefs (BMT WBM 2013).

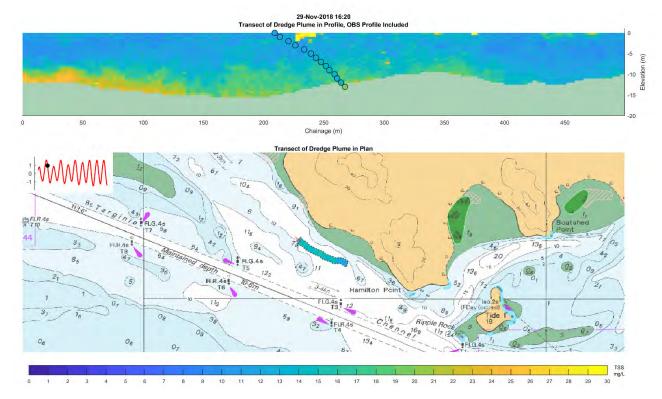



Figure 2-3 Example Figure



## 3 Results

## 3.1 Dredging at Jacobs Channel, Ebb Tide on 29<sup>th</sup> November 2018

#### 3.1.1 Plume Monitoring

ADCP measurements of the dredge plumes at Jacobs Channel are summarised in Figure 3-1 to Figure 3-4 and a complete set of ADCP measurements, which also depict the timing and locations of OBS profiling, is provided in Appendix B. Dredging by TSHD *Brisbane* was conducted on an ebbing tide with a tidal range of approximately 2.8 m. Suspended sediment concentrations of up to 30 mg/L were measured, but were confined to the deeper channel areas and returned to background levels within 1.5 hours.

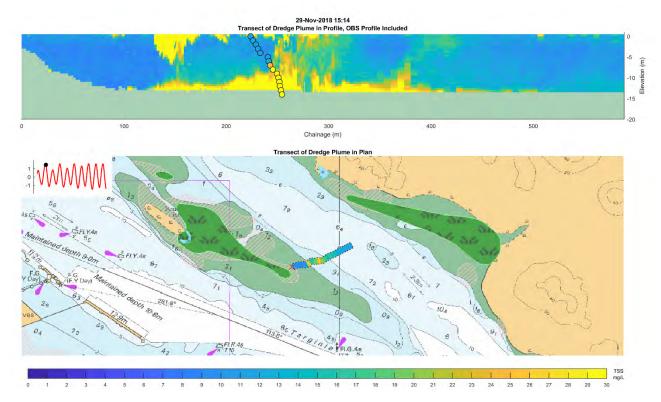



Figure 3-1 Dredging at Jacobs Channel – Ebb Tide



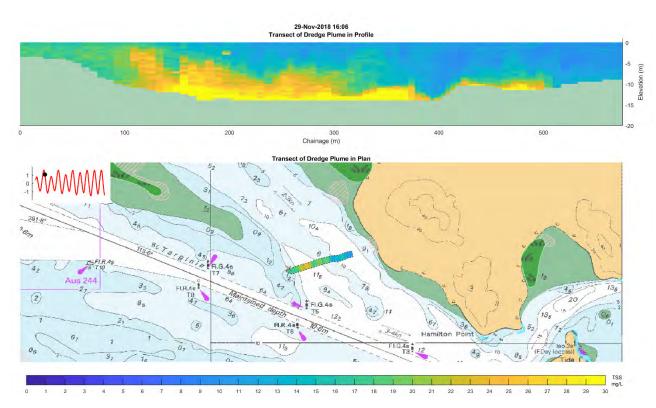



Figure 3-2 Dredging at Jacobs Channel – Ebb Tide

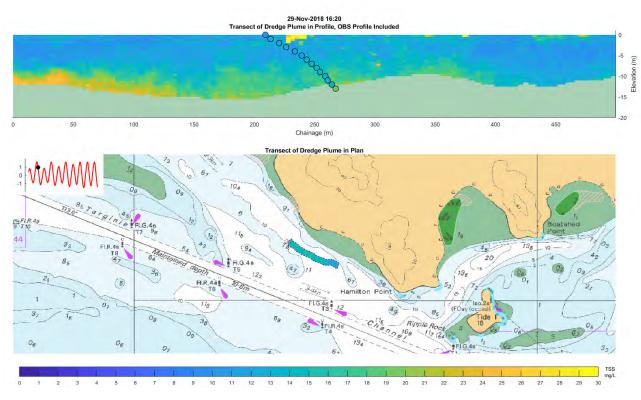



Figure 3-3 Dredging at Jacobs Channel – Ebb Tide



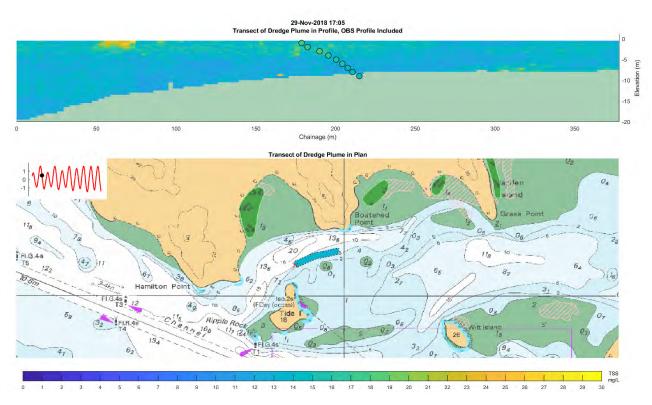



Figure 3-4 Dredging at Jacobs Channel – Ebb Tide

### 3.1.2 Water Quality

#### 3.1.2.1 Water Quality Profiles

Table 3-1 summarises *in situ* water quality data at ebb tide for Jacobs Channel, as well as the baseline sample collected during flood tide, profile data. Temperature, salinity and pH were consistent through the water column and over time. Average dissolved oxygen were ~80% saturation in baseline and plume profiles.

Turbidity profiles are presented in Figure 3-5. Baseline average turbidity was ~12 NTU, increasing to 20 NTU at time interval 0, 22 NTU at 15 minutes, and fell to 12 NTU at 30-60 minute interval intervals, before increasing again to 21 NTU at time interval 120 minutes. Near-bed turbidity at 0 and 15 minute intervals was far greater than surface turbidity, indicating the formation of a near-bed dredge plume at this location. The near-bed plume was a short-term feature that was not detected after the 15 minute time interval.





| Table 5-1 Water quarty prome summary-bacobs onalmer |           |              |                   |      |                         |                    |  |  |  |  |
|-----------------------------------------------------|-----------|--------------|-------------------|------|-------------------------|--------------------|--|--|--|--|
| Jacobs<br>Channel                                   | Parameter | Temp<br>(°C) | Salinity<br>(ppt) | рН   | Dissolved<br>Oxygen (%) | Turbidity<br>(NTU) |  |  |  |  |
| Baseline                                            | Min       | 27.73        | 37.42             | 7.96 | 79.9                    | 10.1               |  |  |  |  |
| 29/11/18,                                           | Max       | 27.98        | 37.44             | 7.98 | 83.2                    | 15.2               |  |  |  |  |
| 14:20                                               | Average   | 27.89        | 37.43             | 7.97 | 81.63                   | 11.95              |  |  |  |  |
| Plume at 0                                          | Min       | 27.86        | 37.42             | 7.99 | 79.8                    | 10.1               |  |  |  |  |
| 29/11/18,                                           | Max       | 27.99        | 37.44             | 8.01 | 83.7                    | 98.2               |  |  |  |  |
| 15:33                                               | Average   | 27.94        | 37.43             | 8.01 | 82.34                   | 17.52              |  |  |  |  |
| Plume at 15                                         | Min       | 27.82        | 37.44             | 7.99 | 77.5                    | 10.6               |  |  |  |  |
| 29/11/18,                                           | Max       | 27.93        | 37.46             | 8.01 | 81.5                    | 68.2               |  |  |  |  |
| 15:33                                               | Average   | 27.87        | 37.45             | 8.01 | 80.44                   | 22.6               |  |  |  |  |
| Plume at 30                                         | Min       | 27.78        | 37.45             | 8    | 78.1                    | 9.8                |  |  |  |  |
| 29/11/18,                                           | Max       | 27.94        | 37.46             | 8.01 | 81.6                    | 21                 |  |  |  |  |
| 15:54                                               | Average   | 27.88        | 37.46             | 8.01 | 80.61                   | 12.1               |  |  |  |  |
| Plume at 60                                         | Min       | 27.79        | 37.47             | 8.02 | 80.2                    | 9.4                |  |  |  |  |
| 29/11/18,<br>16:18                                  | Max       | 27.9         | 37.48             | 8.02 | 82.2                    | 21.1               |  |  |  |  |
| 10.10                                               | Average   | 27.85        | 37.48             | 8.02 | 81.28                   | 12.26              |  |  |  |  |
| Plume at                                            | Min       | 27.78        | 37.47             | 8.01 | 80.2                    | 16.6               |  |  |  |  |
| 120<br>29/11/18,                                    | Max       | 27.83        | 37.48             | 8.02 | 80.9                    | 27.2               |  |  |  |  |
| 17:04                                               | Average   | 27.80        | 37.48             | 8.02 | 80.51                   | 20.38              |  |  |  |  |

 Table 3-1
 Water quality profile summary-Jacobs Channel

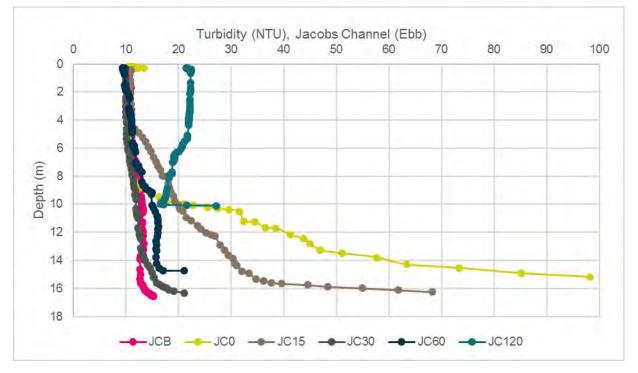



Figure 3-5 Turbidity profiles- Jacobs Channel



#### 3.1.2.2 Water Quality Grab Samples

The water quality grab sampling results for the ebb tide Jacobs Channel measurements are presented in Table 3-2.

Nutrient and TSS concentrations were typically higher in test samples compared to the baseline measurements, as follows:

- Phosphorus Total phosphorus concentrations exceeded the QWQG GV (20 µg/L) in most test samples, peaking at 0 and 15 intervals (19-98 µg/L), before declining to 11-13 µg/L) at 30 minutes, and rising to 21-24 g/L at 120 minutes. Near-bed total phosphorus concentrations were higher than surface waters in most test samples, similar to trends in turbidity. Reactive phosphorus was below the LOR and/or QWQG GV.
- Nitrogen Nitrogen oxide (nitrite + nitrate) concentrations were well above the QWQG GV (3 µg/L) in all samples, and showed no consistent differences between baseline (16-18 µg/L) and plume samples (11-25 µg/L). Ammonia was below the QWQG GV, and was typically less than the LOR. The QWQG GV of 200 µg/L for total nitrogen was met in all samples except baseline B, 0-A, 30-B and 30-C. For all forms of nitrogen, there was no clear differences through the depth profile, nor between baseline and test conditions.
- TSS concentrations exceeded the QWQG limit (15 mg/) in multiple baseline (11-16 mg/L) and test (12-63 mg/L) samples. TSS was highest near the bed at 0 and 15 minute intervals (57-63 mg/L), and a low magnitude near-bed plume was also detected at 30 (22 mg/L) and 60 (26 mg/L) minute intervals.
- All samples were at or below the QWQG GV for chlorophyll a.

Total copper exceeded the ANZECC GV in seven test samples. In accordance with the hierarchy presented in ANZECC/ARMCANZ (2018), where the total fraction exceeds the GV, the dissolved fraction should then compared to the GV to assess the risk of the potential bioavailable fraction. In all seven samples where the total copper concentration exceeded the GV, the dissolved fraction was either not detected or less than the GV, indicating a low toxicant risk.

Two samples (one background, one test sample) had dissolved copper concentrations above the ANZECC/ ARMCANZ GV. In both cases samples, total copper was less or slightly greater than the LOR, and the dissolved fraction was greater than the total fraction. These samples are therefore considered anomalous, which can occur where concentrations are near the LOR.

All other parameters had dissolved and total metal/metalloid concentrations below ANZECC/ARMCANZ (2018) GVs. Total concentrations of aluminium, iron and to a lesser extent manganese and zinc were higher in the test samples compared to the baseline samples. The dissolved fraction of these metals was either below the LOR or similar between baseline and test measurements. These results suggest that metals/metalloids were at concentrations that are unlikely to pose a toxicant risk.



| Jacobs Channel - Parameter     | Unit    | LOR        | GV     | Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | seline                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  | т                                                                                                                                                                                                                                    | est                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                      |                                                                                          |                                                              |                                  |    |
|--------------------------------|---------|------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|----|
| Time interval (minutes)        |         |            |        | Pre-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dredge                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                      |                                                                                          | 1:                                                           | 20                               |    |
| Depth interval                 |         |            |        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Α    | В                                                                                                                                                                                                                                                                                                                                                                                                            | С                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          | С                                                                                                                                                                                                                                                                                            | А                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                      | С                                                                                                                                                                                                        |                                                                                                                                                                              |                                                                                                                                                  | С                                                                                                                    |                                                                                          | В                                                            |                                  | С  |
| Nutrients, TSS, Chlorophyll (r | ote – Q | WQG GV a   | dopted | l below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    |                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                    |                                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                  |                                                                                                                      |                                                                                          |                                                              | -                                |    |
| Total Phosphorus               | µg/L    | 5          | 20     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22   | 19                                                                                                                                                                                                                                                                                                                                                                                                           | 49                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                               | 17                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                       | 10                                                                                                                                                                           | 14                                                                                                                                               | 21                                                                                                                   | 21                                                                                       | 24                                                           | 2                                | 22 |
| Ortho-Phosphorus               | µg/L    | 1          | 6      | <lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                           | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                           | <lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | 1    | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | <lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | <lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | <lor< td=""><td>2</td><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                             | 2                                                                                                                                                                                                                                    | <lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<>                                           | 1                                                                                                                                                                            | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<>                         | <lor< td=""><td>1</td><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<>                         | 1                                                                                        | <lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<>       | <l< td=""><td>OR</td></l<>       | OR |
| Ammonia-Nitrogen               | µg/L    | 5          | 8      | <lor< td=""><td>7</td><td><lor< td=""><td>14</td><td><lor< td=""><td>8</td><td><lor< td=""><td><lor< td=""><td>15</td><td><lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <lor< td=""><td>14</td><td><lor< td=""><td>8</td><td><lor< td=""><td><lor< td=""><td>15</td><td><lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                          | 14   | <lor< td=""><td>8</td><td><lor< td=""><td><lor< td=""><td>15</td><td><lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                | <lor< td=""><td><lor< td=""><td>15</td><td><lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                         | <lor< td=""><td>15</td><td><lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                         | 15                                                                                                                                                                                                                                                                                           | <lor< td=""><td>25</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                        | 25                                                                                                                                                                                                                                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>       | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>       | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<></td></lor<>       | <lor< td=""><td><lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<></td></lor<>       | <lor< td=""><td><lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<></td></lor<>       | <lor< td=""><td><l< td=""><td>OR</td></l<></td></lor<>       | <l< td=""><td>OR</td></l<>       | OR |
| Nitrite + Nitrate (as N)       | µg/L    | 2          | 3      | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25   | 12                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                               | 22                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                       | 14                                                                                                                                                                           | 15                                                                                                                                               | 11                                                                                                                   | 11                                                                                       | 11                                                           | 1                                | 11 |
| Total Nitrogen                 | µg/L    | 50         | 200    | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 151                                                                                                                                                                                                                                                                                                                                                                                                                                                | 313  | 179                                                                                                                                                                                                                                                                                                                                                                                                          | 191                                                                                                                                                                                                                                                                                                                                                                              | 163                                                                                                                                                                                                                                                                                                                                                  | 178                                                                                                                                                                                                                                                                                                                      | 191                                                                                                                                                                                                                                                                                          | 182                                                                                                                                                                                                                                                              | 277                                                                                                                                                                                                                                  | 264                                                                                                                                                                                                      | 173                                                                                                                                                                          | 149                                                                                                                                              | 154                                                                                                                  | 122                                                                                      | 136                                                          | 1                                | 71 |
| Solids (Suspended)             | mg/L    | 1          | 15     | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20   | 15                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                                                                                                               | 38                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                       | 63                                                                                                                                                                                                                                                                                           | 14                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                       | 12                                                                                                                                                                           | 15                                                                                                                                               | 26                                                                                                                   | 25                                                                                       | 24                                                           | 2                                | 20 |
| Chlorophyll a                  | µg/L    | 0.001      | 2      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2    | 2                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                        | 1                                                                                                                                                                            | 2                                                                                                                                                | 1                                                                                                                    | 1                                                                                        | 1                                                            |                                  | 1  |
| Total Organic Carbon           | mg/L    | 1          | _      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2    | 2                                                                                                                                                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                        | 2                                                                                                                                                                            | 3                                                                                                                                                | 3                                                                                                                    | 2                                                                                        | 2                                                            |                                  | 3  |
| Metals and Metalloids (note –  |         | C Toxicity | GV add | onted below)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I    | 1                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                      |                                                                                                                                                                                                          | I                                                                                                                                                                            |                                                                                                                                                  |                                                                                                                      |                                                                                          |                                                              | l                                |    |
| Aluminium (Total)              | µg/L    | 5          |        | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 39                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97   | 730                                                                                                                                                                                                                                                                                                                                                                                                          | 386                                                                                                                                                                                                                                                                                                                                                                              | 1490                                                                                                                                                                                                                                                                                                                                                 | 1070                                                                                                                                                                                                                                                                                                                     | 809                                                                                                                                                                                                                                                                                          | 2010                                                                                                                                                                                                                                                             | 641                                                                                                                                                                                                                                  | 526                                                                                                                                                                                                      | 553                                                                                                                                                                          | 309                                                                                                                                              | 435                                                                                                                  | 783                                                                                      | 762                                                          | 815                              | Τ  |
| Aluminium (Dissolved)          | µg/L    | 5          | -      | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<> | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<> | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<> | OR   | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Arsenic (Total)                | µg/L    | 0.5        | -      | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                | .6   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                              | 2.4                                                                                                                                                                                                                                                                                                                                                  | 2.1                                                                                                                                                                                                                                                                                                                      | 1.9                                                                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                                                                                              | 1.8                                                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                      | 1.8                                                                                                                                                                          | 1.5                                                                                                                                              | 1.7                                                                                                                  | 2.2                                                                                      | 2                                                            | 1.8                              |    |
| Arsenic (Dissolved)            | µg/L    | 0.5        | -      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <l(< td=""><td>DR 1</td><td>2</td><td>1.1</td><td>1.2</td><td>1.3</td><td>1</td><td>1.2</td><td>1.2</td><td>1.1</td><td>1</td><td>0.9</td><td>1.1</td><td>1.1</td><td>1.2</td><td>1.1</td><td>1</td><td>Γ</td></l(<>                                                                                                                                                                                                                                                         | DR 1                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | 1.1                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                              | 1.3                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                        | 1.2                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                              | 1.1                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                        | 0.9                                                                                                                                                                          | 1.1                                                                                                                                              | 1.1                                                                                                                  | 1.2                                                                                      | 1.1                                                          | 1                                | Γ  |
| Cadmium (Total)                | µg/L    | 0.2        | 0.7    | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<> | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<> | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<> | OR   | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Cadmium (Dissolved)            | µg/L    | 0.2        | 0.7    | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<>     | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<>     | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<>     | OR   | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>     | <lor< td=""><td></td></lor<>     |    |
| Chromium (Total)               | µg/L    | 0.5        | 4.4    | <lor< td=""><td>1</td><td><l< td=""><td>OR</td><td>1.3</td><td>1.2</td><td>2.4</td><td>1.6</td><td>1.5</td><td>2.7</td><td>0.6</td><td><lor< td=""><td>0.7</td><td><lor< td=""><td>0.5</td><td>1.2</td><td>0.9</td><td>1.2</td><td></td></lor<></td></lor<></td></l<></td></lor<>                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <l< td=""><td>OR</td><td>1.3</td><td>1.2</td><td>2.4</td><td>1.6</td><td>1.5</td><td>2.7</td><td>0.6</td><td><lor< td=""><td>0.7</td><td><lor< td=""><td>0.5</td><td>1.2</td><td>0.9</td><td>1.2</td><td></td></lor<></td></lor<></td></l<>                                                                                                                                                                                                        | OR   | 1.3                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                              | 2.4                                                                                                                                                                                                                                                                                                                                                  | 1.6                                                                                                                                                                                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                                                                                              | 0.6                                                                                                                                                                                                                                  | <lor< td=""><td>0.7</td><td><lor< td=""><td>0.5</td><td>1.2</td><td>0.9</td><td>1.2</td><td></td></lor<></td></lor<>                                                                                     | 0.7                                                                                                                                                                          | <lor< td=""><td>0.5</td><td>1.2</td><td>0.9</td><td>1.2</td><td></td></lor<>                                                                     | 0.5                                                                                                                  | 1.2                                                                                      | 0.9                                                          | 1.2                              |    |
| Chromium (Dissolved)           | µg/L    | 0.5        | 4.4    | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<>     | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<>     | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<>     | OR   | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>     | <lor< td=""><td></td></lor<>     |    |
| Copper (Total)                 | µg/L    | 1          | 1.3    | <lor< td=""><td>1</td><td><l< td=""><td>OR 🛛</td><td>2</td><td>1</td><td>2</td><td>2</td><td>2</td><td>3</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>1</td><td>2</td><td>Г</td></l<></td></lor<>                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <l< td=""><td>OR 🛛</td><td>2</td><td>1</td><td>2</td><td>2</td><td>2</td><td>3</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>2</td><td>1</td><td>2</td><td>Г</td></l<>                                                                                                                                                                                                                                                                 | OR 🛛 | 2                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                        | 1                                                                                                                                                                            | 1                                                                                                                                                | 1                                                                                                                    | 2                                                                                        | 1                                                            | 2                                | Г  |
| Copper (Dissolved)             | µg/L    | 1          | 1.3    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <l(< td=""><td>DR <l< td=""><td>OR</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<>                                     | DR <l< td=""><td>OR</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<>                                     | OR   | 1                                                                                                                                                                                                                                                                                                                                                                                                            | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | 2                                                                                                                                                                                                        | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Iron (Total)                   | µg/L    | 5          | -      | 363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 46                                                                                                                                                                                                                                                                                                                                                                                                                                               | 62   | 998                                                                                                                                                                                                                                                                                                                                                                                                          | 531                                                                                                                                                                                                                                                                                                                                                                              | 2170                                                                                                                                                                                                                                                                                                                                                 | 1590                                                                                                                                                                                                                                                                                                                     | 1260                                                                                                                                                                                                                                                                                         | 2870                                                                                                                                                                                                                                                             | 682                                                                                                                                                                                                                                  | 635                                                                                                                                                                                                      | 785                                                                                                                                                                          | 427                                                                                                                                              | 593                                                                                                                  | 1160                                                                                     | 1120                                                         | 1110                             |    |
| Iron (Dissolved)               | µg/L    | 5          | -      | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<> | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<> | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<> | OR   | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Lead (Total)                   | µg/L    | 0.2        | 4.4    | <lor< td=""><td>0.</td><td>4 <l< td=""><td>OR</td><td>0.5</td><td>&lt;0.2</td><td>0.7</td><td>0.3</td><td>0.2</td><td>0.8</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></lor<>                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 <l< td=""><td>OR</td><td>0.5</td><td>&lt;0.2</td><td>0.7</td><td>0.3</td><td>0.2</td><td>0.8</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<>                                                                                              | OR   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                          | <0.2                                                                                                                                                                                                                                                                                                                                                                             | 0.7                                                                                                                                                                                                                                                                                                                                                  | 0.3                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                          | 0.8                                                                                                                                                                                                                                                              | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Lead (Dissolved)               | µg/L    | 0.2        | 4.4    | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<> | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<> | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<> | OR   | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Manganese (Total)              | µg/L    | 0.5        | -      | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .2 12                                                                                                                                                                                                                                                                                                                                                                                                                                              | .1   | 21.3                                                                                                                                                                                                                                                                                                                                                                                                         | 17.6                                                                                                                                                                                                                                                                                                                                                                             | 43.6                                                                                                                                                                                                                                                                                                                                                 | 31.4                                                                                                                                                                                                                                                                                                                     | 26.1                                                                                                                                                                                                                                                                                         | 60.5                                                                                                                                                                                                                                                             | 13.9                                                                                                                                                                                                                                 | 13.2                                                                                                                                                                                                     | 19.5                                                                                                                                                                         | 12.4                                                                                                                                             | 15.7                                                                                                                 | 27.4                                                                                     | 26.2                                                         | 24.8                             |    |
| Manganese (Dissolved)          | µg/L    | 0.5        | -      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <l(< td=""><td>DR 1</td><td>.6</td><td>2.4</td><td>1.9</td><td>7.4</td><td>5</td><td>3.3</td><td>12.4</td><td>2</td><td>1.8</td><td>3.2</td><td>1.5</td><td>1.9</td><td>2.5</td><td>3.1</td><td>2.8</td><td>T</td></l(<>                                                                                                                                                                                                                                                     | DR 1                                                                                                                                                                                                                                                                                                                                                                                                                                               | .6   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                              | 7.4                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                        | 3.3                                                                                                                                                                                                                                                                                          | 12.4                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                    | 1.8                                                                                                                                                                                                      | 3.2                                                                                                                                                                          | 1.5                                                                                                                                              | 1.9                                                                                                                  | 2.5                                                                                      | 3.1                                                          | 2.8                              | T  |
| Mercury (Total)                | µg/L    | 0.00004    | 0.1    | <lor< td=""><td><l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<></td></lor<>                     | <l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Mercury (Dissolved)            | µg/L    | 0.00004    | 0.1    | <lor< td=""><td><l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<></td></lor<>                     | <l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Nickel (Total)                 | µg/L    | 0.5        | 7      | <lor< td=""><td>3</td><td></td><td>OR</td><td><lor< td=""><td><lor< td=""><td>1.5</td><td>1.2</td><td>1</td><td>1.5</td><td><lor< td=""><td>0.7</td><td>0.7</td><td><lor< td=""><td><lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OR   | <lor< td=""><td><lor< td=""><td>1.5</td><td>1.2</td><td>1</td><td>1.5</td><td><lor< td=""><td>0.7</td><td>0.7</td><td><lor< td=""><td><lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                      | <lor< td=""><td>1.5</td><td>1.2</td><td>1</td><td>1.5</td><td><lor< td=""><td>0.7</td><td>0.7</td><td><lor< td=""><td><lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                      | 1.5                                                                                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                            | 1.5                                                                                                                                                                                                                                                              | <lor< td=""><td>0.7</td><td>0.7</td><td><lor< td=""><td><lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<></td></lor<></td></lor<>                                                                                    | 0.7                                                                                                                                                                                                      | 0.7                                                                                                                                                                          | <lor< td=""><td><lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<></td></lor<>                                                    | <lor< td=""><td>0.7</td><td>0.7</td><td>0.6</td><td>Г</td></lor<>                                                    | 0.7                                                                                      | 0.7                                                          | 0.6                              | Г  |
| Nickel (Dissolved)             | µg/L    | 0.5        | 7      | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <l(< td=""><td></td><td></td><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<>                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 0.6                                                                                                                                                                                                                                                                                                                                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | 0.5                                                                                                                                                                                                                                  | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Silver (Total)                 | µg/L    | 0.1        | 1.4    | <lor< td=""><td><l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<></td></lor<>     | <l(< td=""><td>DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<></td></l(<>     | DR <l< td=""><td>OR</td><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l<>     | OR   | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>     | <lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>     | <lor< td=""><td></td></lor<>     |    |
| Silver (Dissolved)             | µg/L    | 0.1        | 1.4    | <lor< td=""><td><l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<></td></lor<>                       | <l(< td=""><td></td><td></td><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | <lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<></td></lor<>   | <lor< td=""><td><lor< td=""><td>ţ,</td></lor<></td></lor<>   | <lor< td=""><td>ţ,</td></lor<>   | ţ, |
| Zinc (Total)                   | µg/L    | 5          | 15     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6    | 13                                                                                                                                                                                                                                                                                                                                                                                                           | <lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                   | 10                                                                                                                                                                                                                                                                                                                                                   | <lor< td=""><td><lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                  | <lor< td=""><td>10</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                  | 10                                                                                                                                                                                                                                                               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |
| Zinc (Dissolved)               | µg/L    | 1          | 15     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <l(< td=""><td>DR (</td><td>5</td><td>7</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></l(<>                                                                      | DR (                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5    | 7                                                                                                                                                                                                                                                                                                                                                                                                            | <lor< td=""><td><lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                     | <lor< td=""><td><lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                     | <lor< td=""><td>6</td><td><lor< td=""><td><lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                     | 6                                                                                                                                                                                                                                                                                            | <lor< td=""><td><lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td>9</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | 9                                                                                                                                                                                                        | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>&lt;</td></lor<></td></lor<> | <lor< td=""><td>&lt;</td></lor<> | <  |

#### Table 3-2 Water quality results - Jacobs Channel

Orange shading = guideline exceeded; green shading = concentration below the laboratory limit of reporting (LOR)



## 3.2 Dredging at Wild Cattle Cutting, Ebb Tide on 30<sup>th</sup> November 2018

#### 3.2.1 Plume Monitoring

The ADCP measurements of the dredge plumes at Wild Cattle Cutting are summarised in Figure 3-6 to Figure 3-8 and a complete set of ADCP measurements is provided in Appendix C. Dredging by the TSHD *Brisbane* was conducted on an ebbing tide going into slack tide, with an ebb tidal range of approximately 1.7 m. Plumes concentrations of up to 25 mg/L were measured, but returned rapidly to background levels before advecting any significant distance.

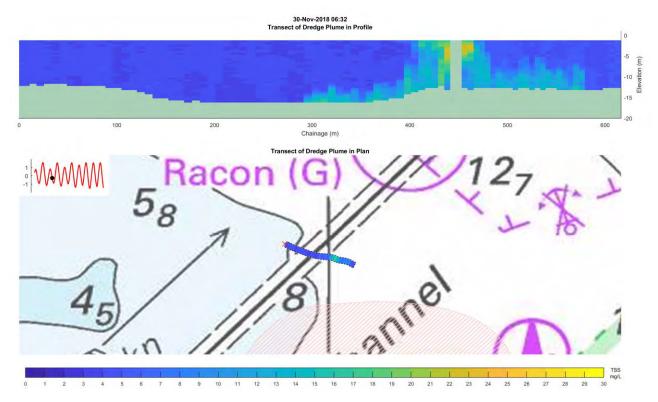



Figure 3-6 Dredging at Wild Cattle Cutting – Ebb Tide



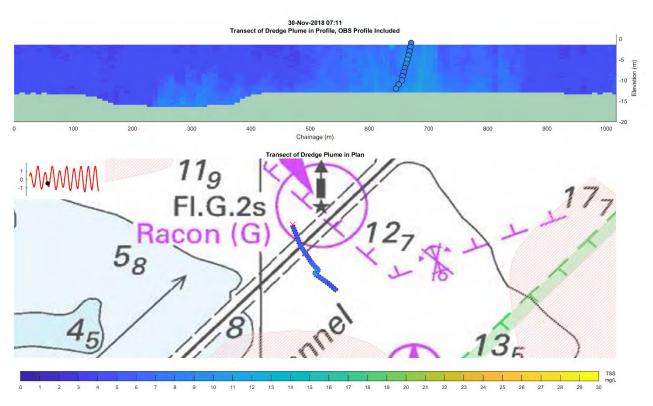



Figure 3-7 Dredging at Wild Cattle Cutting – Ebb Tide

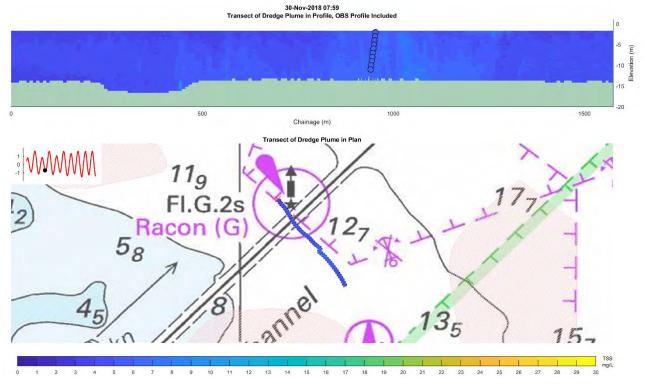



Figure 3-8 Dredging at Wild Cattle Cutting – Ebb Tide



#### 3.2.2 Water Quality

Plume water quality sampling was not conducted at this site. Results from baseline samples collected 3<sup>rd</sup> December 2018 are provided in Appendix H.

#### 3.2.3 Plume Monitoring

The ADCP measurements of the dredge plumes during an ebb tide in the Golding Cutting are summarised in Figure 3-9 to Figure 3-12. A complete set of ADCP measurements is provided in Appendix D. Dredging by TSHD *Brisbane* was conducted on an ebb tide, with an ebb tidal range of approximately 2m. Plume concentrations over 30mg/L were measured, but returned to background levels within 1.5 hours. The plume advected to the northeast of the shipping channel.

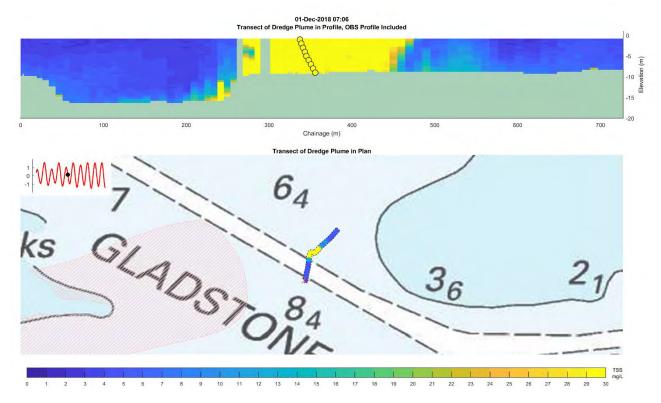



Figure 3-9 Dredging at Golding Cutting – Ebb Tide



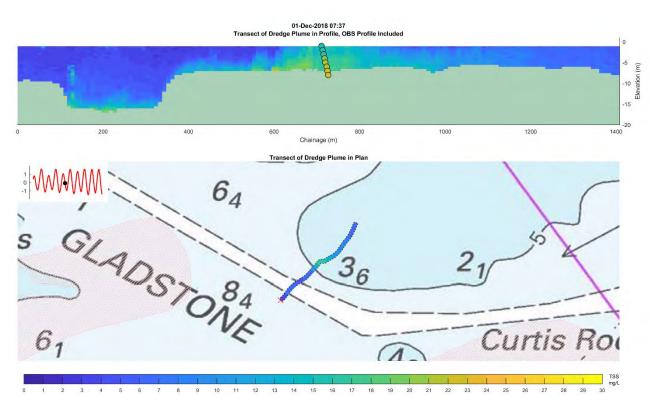



Figure 3-10 Dredging at Golding Cutting – Ebb Tide

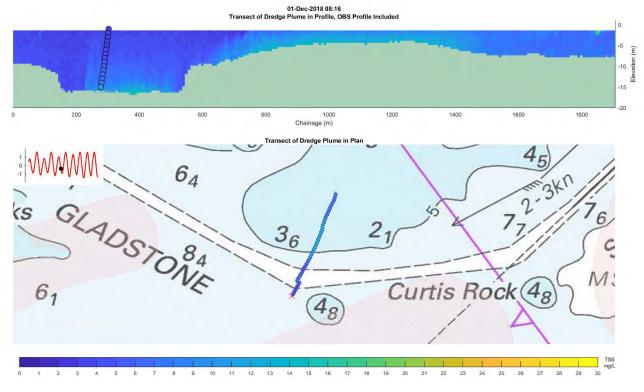



Figure 3-11 Dredging at Golding Cutting – Ebb Tide



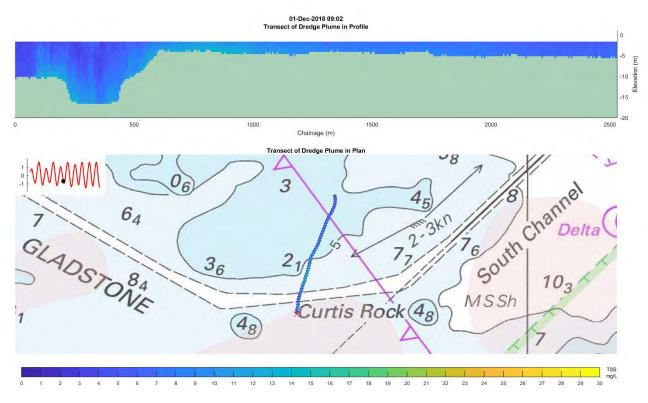



Figure 3-12 Dredging at Golding Cutting – Ebb Tide

#### 3.2.4 Water Quality

No test water quality measurements were carried out at this location. Results from baseline samples collected 3<sup>rd</sup> December 2018 are provided in Appendix H, Table H-1.

### 3.3 Dredging at Gatcombe Channel, Ebb Tide on 2<sup>nd</sup> December 2018

#### 3.3.1 Plume Monitoring

ADCP measurements of the dredge plumes at Gatcombe Channel are summarised in Figure 3-13 to Figure 3-15 and a complete set of ADCP measurements, which also depict the timing and locations of OBS profiling, is provided in Appendix E. Dredging by TSHD *Brisbane* was conducted on an ebbing tide with a tidal range of approximately 2.4m. Very low plume concentrations were measured, indicating that the dredge was not generating significant plumes at the time of monitoring.



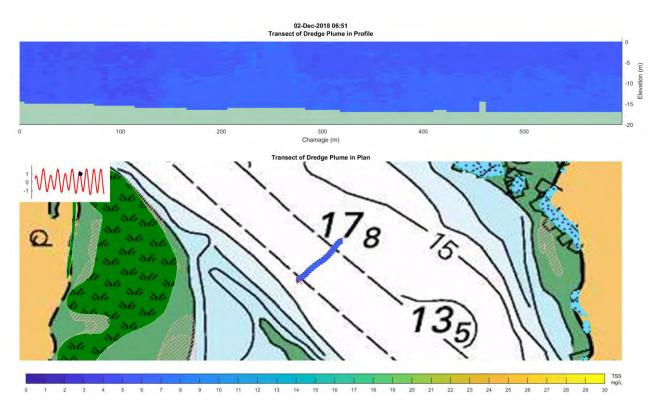



Figure 3-13 Dredging at Gatcombe Channel – Ebb Tide

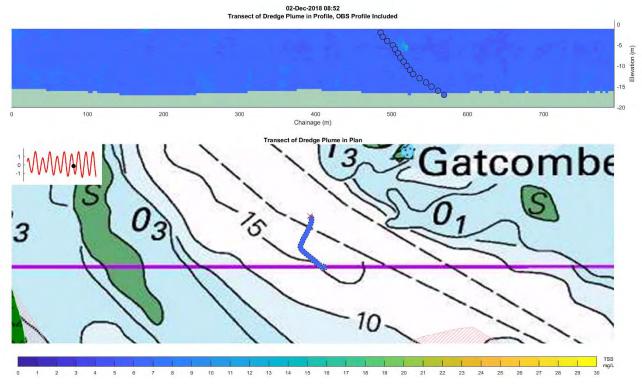



Figure 3-14 Dredging at Gatcombe Channel – Ebb Tide



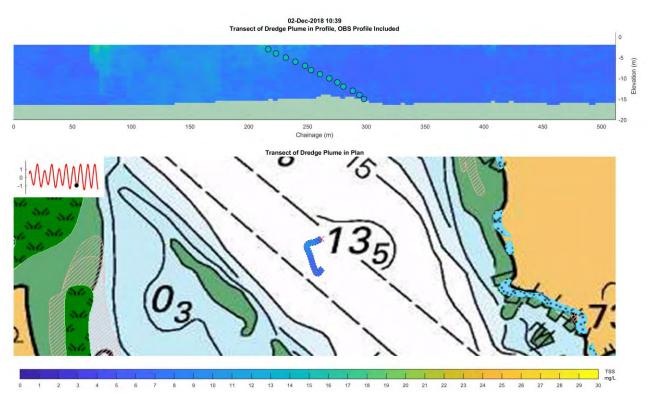



Figure 3-15 Dredging at Gatcombe Channel – Ebb Tide

#### 3.3.2 Water Quality

#### 3.3.2.1 Water Quality Profiles

All samples for Gatcombe Channel were collected during an ebb tide, on the 2<sup>nd</sup> of December 2018. The measurements for all environmental parameters including those from the baseline assessment are summarised in Table 3-4. Temperature, salinity, pH and dissolved oxygen showed little variation over time (baseline and test sampling) and through the water column. Salinity was slightly higher during the baseline assessment compared to test measurements. Dissolved oxygen concentrations ranged from 81.5% to 84.9% saturation.

Turbidity profiles, including that from the baseline assessment, are presented in Figure 3-16. The measured turbidity in the baseline survey was consistent through the water column (3-4 NTU). By comparison, average turbidity (at each time interval) during and after dredging ranged from 7 NTU at time 0, 6 NTU at the 15 minutes interval, and remained around 5 NTU at 30 to 120 minute intervals. There was little variation in turbidity through the water column in test samples (i.e. no evidence of near-bed plume formation).



| Gatcombe<br>Channel<br>(ebb) | Parameter | Temp<br>(°C) | Salinity<br>(ppt) | рН   | Dissolved<br>Oxygen (%) | Turbidity<br>(NTU) |
|------------------------------|-----------|--------------|-------------------|------|-------------------------|--------------------|
|                              | Min       | 27.58        | 37.59             | 8.14 | 82.5                    | 3                  |
| Baseline<br>2/12/18, 6:31    | Max       | 27.61        | 37.63             | 8.19 | 84.6                    | 4.1                |
|                              | Average   | 27.60        | 37.61             | 8.16 | 83.41                   | 3.47               |
|                              | Min       | 27.54        | 37.41             | 8.14 | 81.8                    | 6.8                |
| Plume at 0<br>2/12/18, 8:10  | Max       | 27.58        | 37.44             | 8.18 | 84                      | 8                  |
| 2,12,10, 0,10                | Average   | 27.55        | 37.42             | 8.16 | 82.69                   | 7.41               |
|                              | Min       | 27.55        | 37.39             | 8.12 | 81.3                    | 4.3                |
| Plume at 15<br>2/12/18, 8:19 | Max       | 27.57        | 37.4              | 8.13 | 82.9                    | 5.4                |
| 2/12/10, 0.10                | Average   | 27.56        | 37.40             | 8.12 | 81.97                   | 5.0                |
|                              | Min       | 27.56        | 37.36             | 8.12 | 81.5                    | 5.1                |
| Plume at 30 2/12/18, 8:25    | Max       | 27.58        | 37.37             | 8.12 | 84                      | 6                  |
| 2/12/10, 0.20                | Average   | 27.57        | 37.37             | 8.12 | 82.44                   | 5.3                |
| Plume at 60                  | Min       | 27.59        | 37.36             | 8.12 | 81.7                    | 4.9                |
| 2/12/18, 8:51                | Max       | 27.62        | 37.37             | 8.16 | 83.9                    | 5.9                |
|                              | Average   | 27.60        | 37.36             | 8.14 | 82.53                   | 5.3                |
| Plume at 120                 | Min       | 27.72        | 37.38             | 8.08 | 82.8                    | 3.7                |
| 2/12/18,<br>10:05            | Max       | 28.01        | 37.54             | 8.14 | 84                      | 13.8               |
|                              | Average   | 27.74        | 37.39             | 8.13 | 83.43                   | 4.3                |

 Table 3-3
 Water quality profile summary - Gatcombe Channel (ebb)



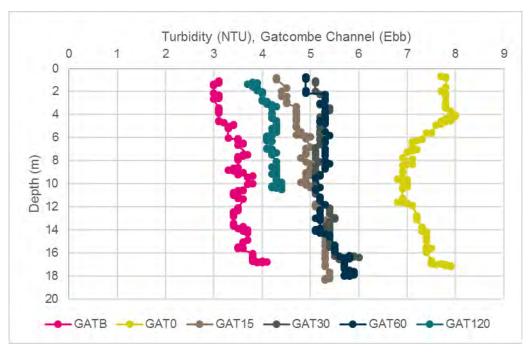



Figure 3-16 Turbidity profiles - Gatcombe Channel (ebb)

## 3.3.2.2 Water Quality Grab Samples

Results of the water quality grab sampling for both the baseline and test sampling at the Gatcombe Channel are presented in Table 3-4.

TSS concentrations were generally higher in the test samples compared to the baseline samples. With the exception of one test sample, TSS concentrations remained below the QWQG trigger value. In contrast, there was no evidence that dredging increased nutrient concentrations in the water column. Total phosphorus, reactive phosphorus and ammonia concentrations were less than the LOR. Total nitrogen and nitrogen oxides (nitrate + nitrite) during test conditions were within the range of baseline conditions. Nitrogen oxides concentrations exceeded or were at the QWQG GV in most samples, except mid-depth and near-bed baseline samples which met the GV.

Dissolved metal/metalloid concentrations were either below the LOR or below ANZECC/ARMCANZ (2018) GVs in all samples. Total iron was higher in all test samples compared to the baseline assessment. However, the dissolved fraction for iron was below the LOR in all baseline and test samples. Total manganese at time interval 0 (8-19 mg/L) was greater than baseline values (3-5 mg/L), and slowly declined over time (time interval 120 = 6-6.5 mg/L). Dissolved manganese was less than the LOR in most test samples but detected at low concentrations in baseline samples. Overall, these results suggest that metals/metalloids were at concentrations that are unlikely to pose a toxicant risk.



#### Results

| Table 5-4                                |             |               |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | -4 Water quality results - Gatcombe channer (ebb)                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
|------------------------------------------|-------------|---------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
| Gatcombe Channel - Parameter             | Unit        | LOR           | GV  | Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
| Time interval (mins)                     |             |               |     | Pre-dred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                             | 60                                                                                                                                                              |                                                                                                                                     |                                                                                                         | 120                                                                         |                                                 |                     |
| Depth interval                           |             |               |     | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                   | A                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                       | С                                                                                                                                                                                           | А                                                                                                                                                               | В                                                                                                                                   | С                                                                                                       | A                                                                           | В                                               | С                   |
| Nutrients, TSS, Chlorophyll (note – QWQG | GV adopte   | d below)      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
| Total Phosphorus                         | µg/L        | 5             | 20  | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | 0.008                                                                                                                                                                                                                                                                                                                                                                                                                       | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Ortho-Phosphorus                         | µg/L        | 1             | 6   | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Ammonia-Nitrogen                         | µg/L        | 5             | 8   | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td>0.007</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<>               | 0.007                                                                       | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Nitrite + Nitrate (as N)                 | µg/L        | 2             | 3   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                       | 5                                                                                                                                                                                           | 6                                                                                                                                                               | 5                                                                                                                                   | 5                                                                                                       | 5                                                                           | 4                                               | 4                   |
| Total Nitrogen                           | µg/L        | 50            | 200 | 188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 154                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146                                                                                                                                                                                                                                                                                                                                                                                                                         | 157                                                                                                                                                                                                                                                                                                                                                                                             | 167                                                                                                                                                                                                                                                                                                                                                                 | 165                                                                                                                                                                                                                                                                                                                                     | 145                                                                                                                                                                                                                                                                                                         | 144                                                                                                                                                                                                                                                                             | 142                                                                                                                                                                                                                                                 | 148                                                                                                                                                                                                                     | 146                                                                                                                                                                                         | 158                                                                                                                                                             | 145                                                                                                                                 | 161                                                                                                     | 155                                                                         | 65                                              | 166                 |
| Solids (Suspended)                       | mg/L        | 1             | 15  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                                                                                           | 8                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                       | 6                                                                                                                                                                                           | 5                                                                                                                                                               | 6                                                                                                                                   | 8                                                                                                       | 6                                                                           | 6                                               | 6                   |
| Chlorophyll a                            | µg/L        | 0.001         | 2   | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | 1                                                                                                                                                                                           | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Total Organic Carbon                     | mg/L        | 1             | -   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                       | 2                                                                                                                                                                                           | 2                                                                                                                                                               | 2                                                                                                                                   | 2                                                                                                       | 3                                                                           | 3                                               | 2                   |
| Metals and Metalloids (note – ANZECC Tox | icity GV ad | lopted below) |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
| Aluminium (Total)                        | µg/L        | 5             | -   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 254                                                                                                                                                                                                                                                                                                                                                                                                                         | 158                                                                                                                                                                                                                                                                                                                                                                                             | 148                                                                                                                                                                                                                                                                                                                                                                 | 156                                                                                                                                                                                                                                                                                                                                     | 141                                                                                                                                                                                                                                                                                                         | 196                                                                                                                                                                                                                                                                             | 112                                                                                                                                                                                                                                                 | 85                                                                                                                                                                                                                      | 74                                                                                                                                                                                          | 131                                                                                                                                                             | 82                                                                                                                                  | 107                                                                                                     | 114                                                                         | 130                                             | 152                 |
| Aluminium (Dissolved)                    | µg/L        | 5             | -   | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Arsenic (Total)                          | µg/L        | 0.5           | -   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9                                                                                                                                                                                                                                                                                                                                                                                             | 1.8                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                         | 1.8                                                                                                                                                             | 1.7                                                                                                                                 | 1.6                                                                                                     | 1.8                                                                         | 1.5                                             | 1.7                 |
| Arsenic (Dissolved)                      | µg/L        | 0.5           | -   | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                                                                     | 1.6                                                                                                                                                                                                                                                                                                         | 1.6                                                                                                                                                                                                                                                                             | 1.7                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                         | 1.6                                                                                                                                                             | 1.6                                                                                                                                 | 1.5                                                                                                     | 1.6                                                                         | 1.6                                             | 1.5                 |
| Cadmium (Total)                          | µg/L        | 0.2           | 0.7 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Cadmium (Dissolved)                      | µg/L        | 0.2           | 0.7 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Chromium (Total)                         | µg/L        | 0.5           | 4.4 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Chromium (Dissolved)                     | µg/L        | 0.5           | 4.4 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Copper (Total)                           | µg/L        | 1             | 1.3 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Copper (Dissolved)                       | µg/L        | 1             | 1.3 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td>1</td><td><lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | 1                                                                                                                                                                                                                                                                                                                                       | <lor< td=""><td>1</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                     | 1                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Iron (Total)                             | µg/L        | 5             | -   | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 384                                                                                                                                                                                                                                                                                                                                                                                                                         | 219                                                                                                                                                                                                                                                                                                                                                                                             | 202                                                                                                                                                                                                                                                                                                                                                                 | 203                                                                                                                                                                                                                                                                                                                                     | 184                                                                                                                                                                                                                                                                                                         | 259                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                 | 111                                                                                                                                                                                                                     | 93                                                                                                                                                                                          | 168                                                                                                                                                             | 116                                                                                                                                 | 145                                                                                                     | 184                                                                         | 171                                             | 190                 |
| Iron (Dissolved)                         | µg/L        | 5             | -   | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Lead (Total)                             | µg/L        | 0.2           | 4.4 | <lor< td=""><td><lor< td=""><td>0.5</td><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | <lor< td=""><td>0.5</td><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                         | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td>0.2</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | 0.2                                                                                                                                                                                                                                                                                                         | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>0.2</td><td><lor< td=""></lor<></td></lor<>                 | 0.2                                             | <lor< td=""></lor<> |
| Lead (Dissolved)                         | µg/L        | 0.2           | 4.4 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Manganese (Total)                        | µg/L        | 0.5           | -   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18.9                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.9                                                                                                                                                                                                                                                                                                                                                                                             | 7.7                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                                                                                                                                                                                                       | 7.9                                                                                                                                                                                                                                                                                                         | 8.6                                                                                                                                                                                                                                                                             | 7.3                                                                                                                                                                                                                                                 | 5.3                                                                                                                                                                                                                     | 4.6                                                                                                                                                                                         | 5.8                                                                                                                                                             | 5.9                                                                                                                                 | 6.3                                                                                                     | 5.7                                                                         | 6.4                                             | 6.5                 |
| Manganese (Dissolved)                    | μg/L        | 0.5           | -   | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                         | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Mercury (Total)                          | µg/L        | 0.00004       | 0.1 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Mercury (Dissolved)                      | µg/L        | 0.00004       | 0.1 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Nickel (Total)                           | µg/L        | 0.5           | 7   | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | 0.5                                                                                                                                                                                                                                                                                                                                     | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Nickel (Dissolved)                       | µg/L        | 0.5           | 7   | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Silver (Total)                           | µg/L        | 0.1           | 1.4 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Silver (Dissolved)                       | µg/L        | 0.1           | 1.4 | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Zinc (Total)                             | µg/L        | 5             | 15  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Zinc (Dissolved)                         | µg/L        | 1             | 15  | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |

## Table 3-4Water quality results - Gatcombe Channel (ebb)

Orange shading = guideline exceeded; green shading = concentration below the laboratory limit of reporting (LOR)



## 3.4 Placement at EBSDS, Flood Tide on 2<sup>nd</sup> December 2018

## 3.4.1 Plume Monitoring

The ADCP measurements of plumes during placement of dredged material at the EBSDS a during flood tide are summarised in Figure 3-17 to Figure 3-19. A complete set of ADCP measurements which also depict the timing and locations OBS profiling is provided in Appendix F. Plume concentrations of up to 30 mg/L were measured, mostly near the water surface. Plume advection and dispersion caused a gradual reduction in the concentrations measured following placement.

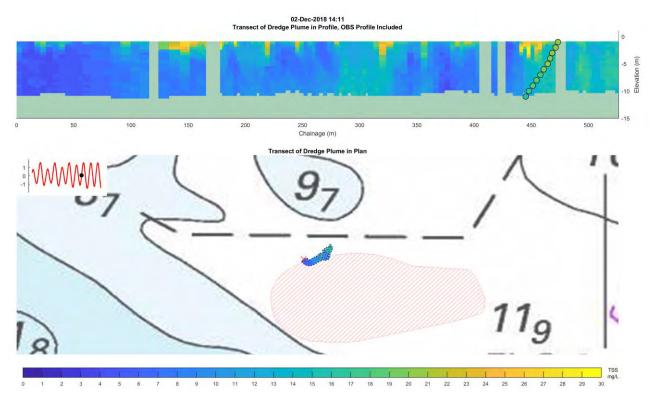



Figure 3-17 Disposal at EBSDS



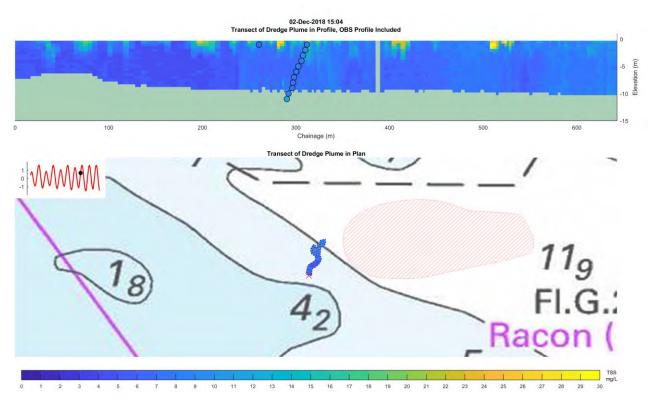



Figure 3-18 Disposal at EBSDS

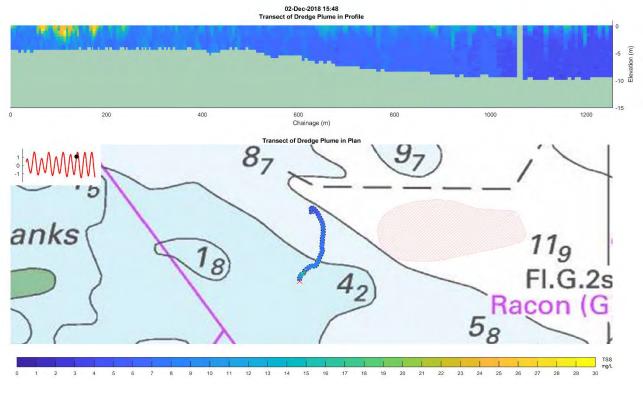



Figure 3-19 Disposal at EBSDS



## 3.4.2 Water Quality

## 3.4.2.1 Water Quality Profiles

Table 3-5 summarises *in situ* water quality data at the EBSDS. Temperature, salinity, pH and dissolved oxygen were consistent through the water column for both baseline and test measurements.

Turbidity profiles for each period are shown in Figure 3-20. Average turbidity in test profiles (5-20 NTU) was higher than the average baseline turbidity (<1 NTU). Turbidity peaked within 15 minutes of disposal and was higher in the middle and lower part of the water column (>5 NTU) than near the surface (<5 NTU) during these periods. There was a gradual decline in turbidity between 30 and 120 minutes (5-8 NTU), and turbidity was uniform throughout the water column during these sampling periods. Turbidity levels did not return to baseline levels at the 120 minute interval.

| EBSBS          | Parameter | Temp (°C) | Salinity<br>(ppt) | рН   | Dissolved<br>Oxygen<br>(%) | Turbidity<br>(NTU) |
|----------------|-----------|-----------|-------------------|------|----------------------------|--------------------|
| Baseline       | Min       | 27.47     | 37.15             | 8.2  | 85.8                       | 0.8                |
| 2/12/18, 13:07 | Max       | 27.56     | 37.18             | 8.21 | 86.7                       | 1                  |
|                | Average   | 27.52     | 37.16             | 8.20 | 86.22                      | 0.83               |
| Plume at 0,    | Min       | 27.54     | 37.13             | 8.18 | 85.9                       | 4.8                |
| 2/12/18, 14:04 | Max       | 27.56     | 37.13             | 8.19 | 86.6                       | 17.5               |
|                | Average   | 27.55     | 37.13             | 8.19 | 86.28                      | 10.33              |
| Plume at 15    | Min       | 27.54     | 37.13             | 8.18 | 85.7                       | 17.8               |
| 2/12/18, 14:07 | Max       | 27.55     | 37.13             | 8.18 | 86.1                       | 22.9               |
|                | Average   | 27.54     | 37.13             | 8.18 | 85.92                      | 21.50              |
| Plume at 30    | Min       | 27.54     | 37.1              | 8.19 | 85.9                       | 8                  |
| 2/12/18, 14:38 | Max       | 27.55     | 37.11             | 8.21 | 86.4                       | 9.2                |
|                | Average   | 27.54     | 37.11             | 8.20 | 86.14                      | 8.70               |
| Plume at 60    | Min       | 27.57     | 37.13             | 8.18 | 86                         | 7                  |
| 2/12/18, 15:04 | Max       | 27.58     | 37.14             | 8.19 | 86.9                       | 8.8                |
|                | Average   | 27.58     | 37.14             | 8.18 | 86.46                      | 8.09               |
| Plume at 120   | Min       | 27.57     | 37.13             | 8.18 | 86                         | 5.4                |
| 2/12/18, 16:00 | Max       | 27.58     | 37.13             | 8.18 | 86.5                       | 5.9                |
|                | Average   | 27.57     | 37.13             | 8.18 | 86.24                      | 5.54               |

Table 3-5Water quality profile summary- EBSDS



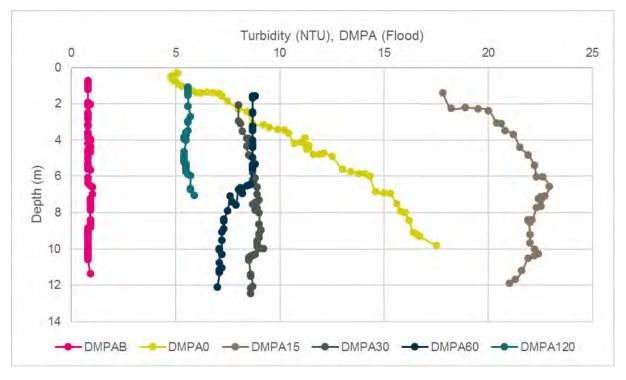



Figure 3-20 Turbidity profiles- EBSDS

## 3.4.2.2 Water Quality Grab Samples

The water quality analysis results for the EBSDS baseline and test samples are presented in Table 3-5. In summary:

- TSS Consistent with turbidity, TSS was higher in test samples than baseline samples. The TSS concentration exceeded the QWQG GV in three test samples, whereas the TSS concentration was below the LOR for the baseline samples.
- Nutrients Concentrations of most nutrients were less than the LOR and QWQG GV. Total
  phosphorus concentrations exceeded the QWQG GV in one baseline sample, while all other
  samples were below the LOR. The concentration of nitrate + nitrite exceeded the QWQG GV in
  two test and one baseline sample. Reactive phosphorus and ammonia-nitrogen concentrations
  were below the LOR. Overall, these results do not suggest that disposal lead to increased nutrient
  concentrations in the water column, despite the higher TSS values.
- Chlorophyll *a* was below the LOR in all test and baseline samples.

Concentrations of total aluminium, iron and manganese were higher in test samples than baseline samples. Consistent with trends in TSS, concentrations of these three metals had not returned to baseline levels 120 minutes post disposal. There is no ANZECC GV for these three parameters.

Total copper concentrations exceeded the ANZECC GV of 1.3 mg/L in two test samples (both 2 mg/L). In both samples, the dissolved fraction was less than the LOR, indicating that they are unlikely to pose a toxicant risk.

All other dissolved and total metals/metalloids had concentrations that were below ANZECC/ARMCANZ (2018) GVs. All other metals/metalloids had concentrations in all baseline and



plume samples below the LOR, or if detected, had similar concentrations between baseline and test samples.

Overall, these results suggest that metals/metalloids were at concentrations that are unlikely to pose a toxicant risk.



| Table 5-12 water quality results- EB5D5 |                                                      |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |  |  |
|-----------------------------------------|------------------------------------------------------|----------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|--|--|
| Parameter                               | Unit                                                 | LOR      | GV            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Baseline                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     | Test                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |  |  |
| Time interval (mins)                    |                                                      |          |               | Pre-dredg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | jing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                         |                                                                                                                                                                                             | 60                                                                                                                                                              |                                                                                                                                     |                                                                                                         | 120                                                                         |                                                 |                     |  |  |
| Depth interval                          |                                                      |          |               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                                                                                                                                                                                                                                                                                               | С                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                       | В                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                                                                                                                                               | A                                                                                                                                                                                                                                                   | В                                                                                                                                                                                                                       | С                                                                                                                                                                                           | А                                                                                                                                                               | В                                                                                                                                   | С                                                                                                       | А                                                                           | В                                               | С                   |  |  |
| Nutrients, TSS, Chlorop                 | ohyll (not                                           | e – QWQG | GV adopted be | low)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |  |  |
| Total Phosphorus                        | µg/L                                                 | 5        | 20            | <lor< td=""><td>24</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td><lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | <lor< td=""><td>0.008</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>               | 0.008                                                                                                                                                                                                                                                                                                                                   | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Ortho-Phosphorus                        | µg/L                                                 | 1        | 6             | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Ammonia-Nitrogen                        | µg/L                                                 | 5        | 8             | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Nitrite + Nitrate (as N)                | µg/L                                                 | 2        | 3             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td><lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<></td></lor<>                                                                                          | <lor< td=""><td>4</td><td>2</td><td>2</td><td>14</td><td>2</td><td><lor< td=""></lor<></td></lor<>                                                                                          | 4                                                                                                                                                               | 2                                                                                                                                   | 2                                                                                                       | 14                                                                          | 2                                               | <lor< td=""></lor<> |  |  |
| Total Nitrogen                          | µg/L                                                 | 50       | 200           | 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 167                                                                                                                                                                                                                                                                                                                                                                                                                         | 169                                                                                                                                                                                                                                                                                                                                                                                             | 162                                                                                                                                                                                                                                                                                                                                                                 | 151                                                                                                                                                                                                                                                                                                                                     | 152                                                                                                                                                                                                                                                                                                         | 18                                                                                                                                                                                                                                                                              | 165                                                                                                                                                                                                                                                 | 159                                                                                                                                                                                                                     | 191                                                                                                                                                                                         | 181                                                                                                                                                             | 186                                                                                                                                 | 198                                                                                                     | 211                                                                         | 169                                             | 107                 |  |  |
| Solids (Suspended)                      | mg/L                                                 | 1        | 15            | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td><td>6</td><td>12</td><td>23</td><td>14</td><td>8</td><td>20</td><td>17</td><td>4</td><td>12</td><td>11</td><td>7</td><td>7</td><td>4</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                                                                                                                     | <lor< td=""><td><lor< td=""><td><lor< td=""><td>13</td><td>6</td><td>12</td><td>23</td><td>14</td><td>8</td><td>20</td><td>17</td><td>4</td><td>12</td><td>11</td><td>7</td><td>7</td><td>4</td></lor<></td></lor<></td></lor<>                                                                                                                                                                                                                                                     | <lor< td=""><td><lor< td=""><td>13</td><td>6</td><td>12</td><td>23</td><td>14</td><td>8</td><td>20</td><td>17</td><td>4</td><td>12</td><td>11</td><td>7</td><td>7</td><td>4</td></lor<></td></lor<>                                                                                                                                                                                                                                                     | <lor< td=""><td>13</td><td>6</td><td>12</td><td>23</td><td>14</td><td>8</td><td>20</td><td>17</td><td>4</td><td>12</td><td>11</td><td>7</td><td>7</td><td>4</td></lor<>                                                                                                                                                                                                                                                     | 13                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                      | 23                                                                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                      | 17                                                                                                                                                                                          | 4                                                                                                                                                               | 12                                                                                                                                  | 11                                                                                                      | 7                                                                           | 7                                               | 4                   |  |  |
| Chlorophyll a                           | µg/L                                                 | 0.001    | 2             | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Total Organic Carbon                    | mg/L                                                 | 1        | -             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                   | <1                                                                                                                                                                                                                      | 2                                                                                                                                                                                           | 2                                                                                                                                                               | <1                                                                                                                                  | 2                                                                                                       | 2                                                                           | 2                                               | 2                   |  |  |
| Metals and Metalloids (                 | Metalloids (note – ANZECC Toxicity GV adopted below) |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |  |  |
| Aluminium (Total)                       | µg/L                                                 | 5        | -             | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                                                                                                                                                                                                                                              | 294                                                                                                                                                                                                                                                                                                                                                                 | 569                                                                                                                                                                                                                                                                                                                                     | 229                                                                                                                                                                                                                                                                                                         | 147                                                                                                                                                                                                                                                                             | 330                                                                                                                                                                                                                                                 | 270                                                                                                                                                                                                                     | 45                                                                                                                                                                                          | 41                                                                                                                                                              | 131                                                                                                                                 | 199                                                                                                     | 62                                                                          | 148                                             | 125                 |  |  |
| Aluminium (Dissolved)                   | µg/L                                                 | 5        | -             | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Arsenic (Total)                         | µg/L                                                 | 0.5      | -             | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                     | 1.8                                                                                                                                                                                                                                                                                                         | 1.8                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                       | 1.8                                                                                                                                                                                         | 1.8                                                                                                                                                             | 1.9                                                                                                                                 | 2                                                                                                       | 2                                                                           | 1.7                                             | 1.6                 |  |  |
| Arsenic (Dissolved)                     | µg/L                                                 | 0.5      | -             | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5                                                                                                                                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                                                                                                                                         | 1.7                                                                                                                                                                                                                                                                             | 1.6                                                                                                                                                                                                                                                 | 1.6                                                                                                                                                                                                                     | 1.7                                                                                                                                                                                         | 1.5                                                                                                                                                             | 1.6                                                                                                                                 | 1.7                                                                                                     | 1.6                                                                         | 1.3                                             | 1.2                 |  |  |
| Cadmium (Total)                         | µg/L                                                 | 0.2      | 0.7           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Cadmium (Dissolved)                     | µg/L                                                 | 0.2      | 0.7           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Chromium (Total)                        | µg/L                                                 | 0.5      | 4.4           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Chromium (Dissolved)                    | µg/L                                                 | 0.5      | 4.4           | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>0.7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>0.7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>0.7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td><lor< td=""><td>0.6</td><td>0.7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td>0.6</td><td>0.7</td><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | 0.6                                                                                                                                                                                                                                                                                                                                                                 | 0.7                                                                                                                                                                                                                                                                                                                                     | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Copper (Total)                          | µg/L                                                 | 1        | 1.3           | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td><lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td><lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td>2</td><td><lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | 2                                                                                                                                                                                                                                                                                                                                       | <lor< td=""><td><lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td>2</td><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | 2                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                       | <lor< td=""><td><lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td><lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | <lor< td=""><td>1</td><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<>                   | 1                                                                                                       | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Copper (Dissolved)                      | µg/L                                                 | 1        | 1.3           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Iron (Total)                            | µg/L                                                 | 5        | -             | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 214                                                                                                                                                                                                                                                                                                                                                                                                                         | 81                                                                                                                                                                                                                                                                                                                                                                                              | 607                                                                                                                                                                                                                                                                                                                                                                 | 1120                                                                                                                                                                                                                                                                                                                                    | 402                                                                                                                                                                                                                                                                                                         | 285                                                                                                                                                                                                                                                                             | 645                                                                                                                                                                                                                                                 | 549                                                                                                                                                                                                                     | 79                                                                                                                                                                                          | 69                                                                                                                                                              | 218                                                                                                                                 | 323                                                                                                     | 93                                                                          | 247                                             | 173                 |  |  |
| Iron (Dissolved)                        | µg/L                                                 | 5        | -             | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Lead (Total)                            | µg/L                                                 | 0.2      | 4.4           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td>0.4</td><td>0.6</td><td>0.3</td><td>0.2</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.3</td><td>0.2</td><td>0.2</td><td>0.3</td><td>0.2</td><td>0.2</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                                                                                 | <lor< td=""><td>0.6</td><td><lor< td=""><td>0.4</td><td>0.6</td><td>0.3</td><td>0.2</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.3</td><td>0.2</td><td>0.2</td><td>0.3</td><td>0.2</td><td>0.2</td></lor<></td></lor<></td></lor<>                                                                                                                                                                                                                 | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                         | <lor< td=""><td>0.4</td><td>0.6</td><td>0.3</td><td>0.2</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>0.3</td><td>0.2</td><td>0.2</td><td>0.3</td><td>0.2</td><td>0.2</td></lor<></td></lor<>                                                                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                                                                                                 | 0.6                                                                                                                                                                                                                                                                                                                                     | 0.3                                                                                                                                                                                                                                                                                                         | 0.2                                                                                                                                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                 | 0.3                                                                                                                                                                                                                     | <lor< td=""><td>0.3</td><td>0.2</td><td>0.2</td><td>0.3</td><td>0.2</td><td>0.2</td></lor<>                                                                                                 | 0.3                                                                                                                                                             | 0.2                                                                                                                                 | 0.2                                                                                                     | 0.3                                                                         | 0.2                                             | 0.2                 |  |  |
| Lead (Dissolved)                        | µg/L                                                 | 0.2      | 4.4           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Manganese (Total)                       | µg/L                                                 | 0.5      | -             | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.5                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.4                                                                                                                                                                                                                                                                                                                                                                                             | 26.1                                                                                                                                                                                                                                                                                                                                                                | 34.7                                                                                                                                                                                                                                                                                                                                    | 16.7                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                              | 20.3                                                                                                                                                                                                                                                | 19.9                                                                                                                                                                                                                    | 6.6                                                                                                                                                                                         | 6.2                                                                                                                                                             | 13.2                                                                                                                                | 13.4                                                                                                    | 8.5                                                                         | 9.3                                             | 8.4                 |  |  |
| Manganese (Dissolved)                   | µg/L                                                 | 0.5      | -             | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.7                                                                                                                                                                                                                                                                                                                                                                                             | 2.1                                                                                                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                     | 2.4                                                                                                                                                                                                                                                                                                         | 2.1                                                                                                                                                                                                                                                                             | 2.6                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                     | 2                                                                                                                                                                                           | 1.9                                                                                                                                                             | 2.3                                                                                                                                 | 2.1                                                                                                     | 2                                                                           | 2                                               | 2                   |  |  |
| Mercury (Total)                         | µg/L                                                 | 0.00004  | 0.1           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Mercury (Dissolved)                     | µg/L                                                 | 0.00004  | 0.1           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Nickel (Total)                          | µg/L                                                 | 0.5      | 7             | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>1.1</td><td><lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>1.1</td><td><lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.6</td><td>1.1</td><td><lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | <lor< td=""><td><lor< td=""><td>0.6</td><td>1.1</td><td><lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | <lor< td=""><td>0.6</td><td>1.1</td><td><lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                 | 0.6                                                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                     | <lor< td=""><td><lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | <lor< td=""><td>0.6</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                 | 0.6                                                                                                                                                                                                                                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | 0.5                                                                                                                                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Nickel (Dissolved)                      | µg/L                                                 | 0.5      | 7             | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>0.5</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | 0.5                                                                                                                                                                                                                                                                             | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Silver (Total)                          | µg/L                                                 | 0.1      | 1.4           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Silver (Dissolved)                      | µg/L                                                 | 0.1      | 1.4           | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Zinc (Total)                            | µg/L                                                 | 5        | 15            | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
| Zinc (Dissolved)                        | µg/L                                                 | 1        | 15            | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |
|                                         | r-9' -                                               |          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |  |  |

Table 3-12 Water quality results- EBSDS

Orange shading = guideline exceeded; green shading = concentration below the laboratory limit of reporting (LOR)





## 3.5 Water Sample QA/QC Assessment

The results of the QA/QC sample assessment (refer to Section 2.3.1 for details) are discussed below. All raw data are presented in the appendices to this report.

## 3.5.1 Field Blanks

The field blank test has been undertaken to detect any potential contamination from the sampling equipment used for obtaining the water samples. Concentrations of all nutrients and metals/metalloids were below the laboratory LOR (Table 3-6). The field blank assessment indicated that the sampling equipment and procedures did not lead to contamination of the samples.

## 3.5.2 Trip Blanks

The trip blank test was undertaken to test for any potential contamination due to the sample bottles used or during transport of the samples (Table 3-6). Concentrations of all nutrients and metals/metalloids were below the laboratory LOR in the blank samples. This indicated that no sample contamination occurred during transport of the sample bottles.

## 3.5.3 Intra-lab and Inter-lab Duplicates

The intra-lab duplicate assessment was undertaken to test for potential variation in the analyses undertaken by the primary laboratory (Table 3-6). The purpose of the inter-lab assessment was to test for variation between the primary and secondary laboratories (Table 3-7).

The intra-lab and inter-lab duplicate assessments were generally satisfactory with the Relative Percent Difference (RPD) and Relative Standard Deviation (RSD) for most parameters within the ±50% criterion. The exception was one a field duplicate sample at Gatcombe Channel, which had high inter-sample variability for nitrate. Given the low concentrations for this parameter, this variability does not change the overall observed patterns in water quality and the conclusions drawn from the water quality samples.



#### Results

## Table 3-6 QA/QC – Blanks and RSD Calculations for Field Duplicates

| Parameter                | Unit | Field blank                                                                                                                                                                           | Trip blank                                                                                                                                                | GCBA                                                                                                                          | GCBD                                                                                              | RPD(%) | WCCBA                                                      | WCCBD                          | RSD/ RPD(%)* |
|--------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------|--------------------------------|--------------|
| Ortho-Phosphorus         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Total Phosphorus         | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Ammonia-Nitrogen         | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Nitrite + Nitrate (as N) | μg/L | <lor< td=""><td><lor< td=""><td>0.008</td><td>0.002</td><td>120*</td><td>0.003</td><td>0.002</td><td>40*</td></lor<></td></lor<>                                                      | <lor< td=""><td>0.008</td><td>0.002</td><td>120*</td><td>0.003</td><td>0.002</td><td>40*</td></lor<>                                                      | 0.008                                                                                                                         | 0.002                                                                                             | 120*   | 0.003                                                      | 0.002                          | 40*          |
| Nitrite (as N)           | mg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Nitrate (as N)           | mg/L | <lor< td=""><td><lor< td=""><td>0.008</td><td>0.002</td><td>120*</td><td>0.003</td><td>0.002</td><td>40*</td></lor<></td></lor<>                                                      | <lor< td=""><td>0.008</td><td>0.002</td><td>120*</td><td>0.003</td><td>0.002</td><td>40*</td></lor<>                                                      | 0.008                                                                                                                         | 0.002                                                                                             | 120*   | 0.003                                                      | 0.002                          | 40*          |
| Total Nitrogen           | μg/L | <lor< td=""><td><lor< td=""><td>0.185</td><td>0.193</td><td>4.23*</td><td>0.173</td><td>0.178</td><td>2.85*</td></lor<></td></lor<>                                                   | <lor< td=""><td>0.185</td><td>0.193</td><td>4.23*</td><td>0.173</td><td>0.178</td><td>2.85*</td></lor<>                                                   | 0.185                                                                                                                         | 0.193                                                                                             | 4.23*  | 0.173                                                      | 0.178                          | 2.85*        |
| Total Kjeldahl Nitrogen  | mg/L | <lor< td=""><td><lor< td=""><td>0.177</td><td>0.191</td><td>7.61*</td><td>0.17</td><td>0.176</td><td>47.48*</td></lor<></td></lor<>                                                   | <lor< td=""><td>0.177</td><td>0.191</td><td>7.61*</td><td>0.17</td><td>0.176</td><td>47.48*</td></lor<>                                                   | 0.177                                                                                                                         | 0.191                                                                                             | 7.61*  | 0.17                                                       | 0.176                          | 47.48*       |
| Solids (Suspended)       | mg/L | -                                                                                                                                                                                     | -                                                                                                                                                         | 5                                                                                                                             | -                                                                                                 | NC     | 2                                                          | -                              | NC           |
| Chlorophyll a            | μg/L | -                                                                                                                                                                                     | -                                                                                                                                                         | 2                                                                                                                             | -                                                                                                 | NC     | <lor< td=""><td>-</td><td>NC</td></lor<>                   | -                              | NC           |
| Total Organic Carbon     | mg/L | -                                                                                                                                                                                     | -                                                                                                                                                         | 2                                                                                                                             | -                                                                                                 | NC     | 2                                                          | -                              | NC           |
| Aluminium (Dissolved)    | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Arsenic (Dissolved)      | µg/L | <lor< td=""><td>-</td><td>1</td><td>1.1</td><td>9.52*</td><td>1.2</td><td>1.2</td><td>0*</td></lor<>                                                                                  | -                                                                                                                                                         | 1                                                                                                                             | 1.1                                                                                               | 9.52*  | 1.2                                                        | 1.2                            | 0*           |
| Cadmium (Dissolved)      | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Chromium (Dissolved)     | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Copper (Dissolved)       | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Iron (Dissolved)         | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Lead (Dissolved)         | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Manganese (Dissolved)    | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td>0.8</td><td>0.8</td><td>0*</td></lor<></td></lor<></td></lor<>                                                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td>0.8</td><td>0.8</td><td>0*</td></lor<></td></lor<>                                 | <lor< td=""><td>NC</td><td>0.8</td><td>0.8</td><td>0*</td></lor<>                                 | NC     | 0.8                                                        | 0.8                            | 0*           |
| Mercury (Dissolved)      | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Nickel (Dissolved)       | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Silver (Dissolved)       | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Zinc (Dissolved)         | µg/L | <lor< td=""><td>-</td><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                   | -                                                                                                                                                         | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Aluminium (Total)        | µg/L | <lor< td=""><td><lor< td=""><td>172</td><td>106</td><td>47.48*</td><td>59</td><td>71</td><td>18.46*</td></lor<></td></lor<>                                                           | <lor< td=""><td>172</td><td>106</td><td>47.48*</td><td>59</td><td>71</td><td>18.46*</td></lor<>                                                           | 172                                                                                                                           | 106                                                                                               | 47.48* | 59                                                         | 71                             | 18.46*       |
| Arsenic (Total)          | µg/L | <lor< td=""><td><lor< td=""><td>202</td><td>165</td><td>20.16*</td><td>65</td><td>73</td><td>11.59*</td></lor<></td></lor<>                                                           | <lor< td=""><td>202</td><td>165</td><td>20.16*</td><td>65</td><td>73</td><td>11.59*</td></lor<>                                                           | 202                                                                                                                           | 165                                                                                               | 20.16* | 65                                                         | 73                             | 11.59*       |
| Cadmium (Total)          | µg/L | <lor< td=""><td><lor< td=""><td>1.7</td><td>1.3</td><td>26.67*</td><td>1.6</td><td>1.7</td><td>6.06*</td></lor<></td></lor<>                                                          | <lor< td=""><td>1.7</td><td>1.3</td><td>26.67*</td><td>1.6</td><td>1.7</td><td>6.06*</td></lor<>                                                          | 1.7                                                                                                                           | 1.3                                                                                               | 26.67* | 1.6                                                        | 1.7                            | 6.06*        |
| Chromium (Total)         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Copper (Total)           | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Iron (Total)             | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Lead (Total)             | µg/L | <lor< td=""><td><lor< td=""><td>0.3</td><td>0.3</td><td>0*</td><td>0.4</td><td>0.4</td><td>0*</td></lor<></td></lor<>                                                                 | <lor< td=""><td>0.3</td><td>0.3</td><td>0*</td><td>0.4</td><td>0.4</td><td>0*</td></lor<>                                                                 | 0.3                                                                                                                           | 0.3                                                                                               | 0*     | 0.4                                                        | 0.4                            | 0*           |
| Manganese (Total)        | μg/L | <lor< td=""><td><lor< td=""><td>5.1</td><td>4.2</td><td>19.35*</td><td>2.8</td><td>2.9</td><td>3.51*</td></lor<></td></lor<>                                                          | <lor< td=""><td>5.1</td><td>4.2</td><td>19.35*</td><td>2.8</td><td>2.9</td><td>3.51*</td></lor<>                                                          | 5.1                                                                                                                           | 4.2                                                                                               | 19.35* | 2.8                                                        | 2.9                            | 3.51*        |
| Mercury (Total)          | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Nickel (Total)           | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Silver (Total)           | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |
| Zinc (Total)             | μg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | NC     | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC           |

Orange highlight = value >50% acceptance criteria; green highlight = <LOR; NC = not calculated as one or more values <LOR



| Parameter                | Unit | GAT30A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GAT30D                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GAT30A<br>Sec Lab                                                                                                                                                                                                                                                                                                                                                                                                          | RSD/<br>RPD(%)* | GAT60A                                                                                                                                                                                                                                                                                                                                                                              | GAT60D                                                                                                                                                                                                                                                                                                                                                  | GAT60A<br>Sec Lab                                                                                                                                                                                                                                                                                                           | RSD/<br>RPD(%)* | GAT120A                                                                                                                                                                                                                                                                              | GAT120D                                                                                                                                                                                                                                                  | GAT120A<br>Sec Lab                                                                                                                                                                                                           | RSD/<br>RPD(%)* | DMPA60A                                                                                                                                                                               | DMPA60D                                                                                                                                                   | GAT60A<br>Sec Lab                                                                                                             | RSD/<br>RPD(%)* | DMPA<br>120A                                                                           | DMPA<br>120D                                               | DMPA120A<br>Sec Lab            | RSD/<br>RPD(%)* |
|--------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------|-----------------|
| Ortho-Phosphorus         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Total Phosphorus         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Ammonia-Nitrogen         | µg/L | <lor< td=""><td><lor< td=""><td>0.017</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.016</td><td>NC</td><td>0.007</td><td><lor< td=""><td>0.016</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                       | <lor< td=""><td>0.017</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.016</td><td>NC</td><td>0.007</td><td><lor< td=""><td>0.016</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                       | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                      | NC              | <lor< td=""><td><lor< td=""><td>0.016</td><td>NC</td><td>0.007</td><td><lor< td=""><td>0.016</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td>0.016</td><td>NC</td><td>0.007</td><td><lor< td=""><td>0.016</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | 0.016                                                                                                                                                                                                                                                                                                                       | NC              | 0.007                                                                                                                                                                                                                                                                                | <lor< td=""><td>0.016</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                             | 0.016                                                                                                                                                                                                                        | NC              | <lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                               | <lor< td=""><td>0.01</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<></td></lor<>                               | 0.01                                                                                                                          | NC              | <lor< td=""><td><lor< td=""><td>0.01</td><td>NC</td></lor<></td></lor<>                | <lor< td=""><td>0.01</td><td>NC</td></lor<>                | 0.01                           | NC              |
| Nitrite + Nitrate (as N) | µg/L | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.38*          | 0.006                                                                                                                                                                                                                                                                                                                                                                               | 0.007                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                           | 15.38*          | 0.005                                                                                                                                                                                                                                                                                | 0.007                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                            | 33.33*          | 0.004                                                                                                                                                                                 | 0.004                                                                                                                                                     | -                                                                                                                             | 0*              | 0.014                                                                                  | 0.013                                                      | -                              | 7.407*          |
| Nitrite (as N)           | mg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Nitrate (as N)           | mg/L | 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.12            | 0.006                                                                                                                                                                                                                                                                                                                                                                               | 0.007                                                                                                                                                                                                                                                                                                                                                   | 0.006                                                                                                                                                                                                                                                                                                                       | 9.12            | 0.005                                                                                                                                                                                                                                                                                | 0.007                                                                                                                                                                                                                                                    | 0.007                                                                                                                                                                                                                        | 18.23           | 0.004                                                                                                                                                                                 | 0.004                                                                                                                                                     | <lor< td=""><td>NC</td><td>0.014</td><td>0.013</td><td>0.01</td><td>16.88</td></lor<>                                         | NC              | 0.014                                                                                  | 0.013                                                      | 0.01                           | 16.88           |
| Total Nitrogen           | µg/L | 0.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <lor< td=""><td>NC</td><td>0.158</td><td>0.131</td><td><lor< td=""><td>NC</td><td>0.155</td><td>0.18</td><td><lor< td=""><td>NC</td><td>0.181</td><td>0.202</td><td><lor< td=""><td>NC</td><td>0.211</td><td>0.165</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                  | NC              | 0.158                                                                                                                                                                                                                                                                                                                                                                               | 0.131                                                                                                                                                                                                                                                                                                                                                   | <lor< td=""><td>NC</td><td>0.155</td><td>0.18</td><td><lor< td=""><td>NC</td><td>0.181</td><td>0.202</td><td><lor< td=""><td>NC</td><td>0.211</td><td>0.165</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                      | NC              | 0.155                                                                                                                                                                                                                                                                                | 0.18                                                                                                                                                                                                                                                     | <lor< td=""><td>NC</td><td>0.181</td><td>0.202</td><td><lor< td=""><td>NC</td><td>0.211</td><td>0.165</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<>                                                         | NC              | 0.181                                                                                                                                                                                 | 0.202                                                                                                                                                     | <lor< td=""><td>NC</td><td>0.211</td><td>0.165</td><td><lor< td=""><td>NC</td></lor<></td></lor<>                             | NC              | 0.211                                                                                  | 0.165                                                      | <lor< td=""><td>NC</td></lor<> | NC              |
| Total Kjeldahl Nitrogen  | mg/L | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.139                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.92*           | 0.152                                                                                                                                                                                                                                                                                                                                                                               | 0.124                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                           | 20.29*          | 0.15                                                                                                                                                                                                                                                                                 | 0.173                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                            | 14.24*          | 0.177                                                                                                                                                                                 | 0.198                                                                                                                                                     | -                                                                                                                             | 11.2*           | 0.197                                                                                  | 0.152                                                      | -                              | 25.79*          |
| Solids (Suspended)       | mg/L | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                          | NC              | 5                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                           | NC              | 6                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                            | NC              | 4                                                                                                                                                                                     | -                                                                                                                                                         | -                                                                                                                             | NC              | 7                                                                                      | -                                                          | -                              | NC              |
| Chlorophyll a            | µg/L | <lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                          | NC              | <lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                           | NC              | <lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td></lor<></td></lor<></td></lor<>                                                                                                             | -                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                            | NC              | <lor< td=""><td>-</td><td>-</td><td>NC</td><td><lor< td=""><td>-</td><td>-</td><td>NC</td></lor<></td></lor<>                                                                         | -                                                                                                                                                         | -                                                                                                                             | NC              | <lor< td=""><td>-</td><td>-</td><td>NC</td></lor<>                                     | -                                                          | -                              | NC              |
| Total Organic Carbon     | mg/L | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                          | NC              | 2                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                           | NC              | 3                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                            | NC              | 2                                                                                                                                                                                     | -                                                                                                                                                         | -                                                                                                                             | NC              | 2                                                                                      | -                                                          | -                              | NC              |
| Aluminium (Dissolved)    | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Arsenic (Dissolved)      | µg/L | 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.41           | 1.6                                                                                                                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                           | 23.52           | 1.6                                                                                                                                                                                                                                                                                  | 1.2                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                            | 24.12           | 1.5                                                                                                                                                                                   | 1.6                                                                                                                                                       | 2                                                                                                                             | 15.56           | 1.6                                                                                    | 1.5                                                        | 1                              | 23.52           |
| Cadmium (Dissolved)      | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Chromium (Dissolved)     | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Copper (Dissolved)       | µg/L | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Iron (Dissolved)         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Lead (Dissolved)         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Manganese (Dissolved)    | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td><lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                                                   | <lor< td=""><td>NC</td><td>1.9</td><td>1.9</td><td><lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<>                                                                   | NC              | 1.9                                                                                                                                                                                   | 1.9                                                                                                                                                       | <lor< td=""><td>NC</td><td>2</td><td>1.8</td><td><lor< td=""><td>NC</td></lor<></td></lor<>                                   | NC              | 2                                                                                      | 1.8                                                        | <lor< td=""><td>NC</td></lor<> | NC              |
| Mercury (Dissolved)      | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Nickel (Dissolved)       | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Silver (Dissolved)       | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Zinc (Dissolved)         | µg/L | <lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                           | <lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                          | NC              | <lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | 2                                                                                                                                                                                                                                                                                                                           | NC              | <lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | 1                                                                                                                                                                                                                            | NC              | <lor< td=""><td><lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                     | <lor< td=""><td>1</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<></td></lor<>                                     | 1                                                                                                                             | NC              | <lor< td=""><td><lor< td=""><td>2</td><td>NC</td></lor<></td></lor<>                   | <lor< td=""><td>2</td><td>NC</td></lor<>                   | 2                              | NC              |
| Aluminium (Total)        | µg/L | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.45            | 131                                                                                                                                                                                                                                                                                                                                                                                 | 96                                                                                                                                                                                                                                                                                                                                                      | 80                                                                                                                                                                                                                                                                                                                          | 25.49           | 114                                                                                                                                                                                                                                                                                  | 125                                                                                                                                                                                                                                                      | 70                                                                                                                                                                                                                           | 28.26           | 41                                                                                                                                                                                    | 42                                                                                                                                                        | 50                                                                                                                            | 11.13           | 62                                                                                     | 164                                                        | 80                             | 53.38           |
| Arsenic (Total)          | µg/L | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.15           | 168                                                                                                                                                                                                                                                                                                                                                                                 | 126                                                                                                                                                                                                                                                                                                                                                     | 140                                                                                                                                                                                                                                                                                                                         | 14.78           | 184                                                                                                                                                                                                                                                                                  | 176                                                                                                                                                                                                                                                      | 140                                                                                                                                                                                                                          | 14.06           | 69                                                                                                                                                                                    | 62                                                                                                                                                        | 82                                                                                                                            | 14.29           | 93                                                                                     | 248                                                        | 160                            | 46.55           |
| Cadmium (Total)          | µg/L | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.26            | 1.8                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                           | 6.19            | 1.8                                                                                                                                                                                                                                                                                  | 1.8                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                            | 6.19            | 1.8                                                                                                                                                                                   | 1.7                                                                                                                                                       | 2                                                                                                                             | 8.33            | 2                                                                                      | 1.7                                                        | 2                              | 9.12            |
| Chromium (Total)         | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Copper (Total)           | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Iron (Total)             | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Lead (Total)             | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td>140</td><td>NC</td><td><lor< td=""><td>0.4</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                 | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td>140</td><td>NC</td><td><lor< td=""><td>0.4</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                 | <lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td>140</td><td>NC</td><td><lor< td=""><td>0.4</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                 | NC              | <lor< td=""><td>0.2</td><td>140</td><td>NC</td><td><lor< td=""><td>0.4</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                                                 | 0.2                                                                                                                                                                                                                                                                                                                                                     | 140                                                                                                                                                                                                                                                                                                                         | NC              | <lor< td=""><td>0.4</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                                                                 | 0.4                                                                                                                                                                                                                                                      | <lor< td=""><td>NC</td><td>0.3</td><td>0.3</td><td><lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<>                                                                 | NC              | 0.3                                                                                                                                                                                   | 0.3                                                                                                                                                       | <lor< td=""><td>NC</td><td>0.3</td><td>0.4</td><td><lor< td=""><td>NC</td></lor<></td></lor<>                                 | NC              | 0.3                                                                                    | 0.4                                                        | <lor< td=""><td>NC</td></lor<> | NC              |
| Manganese (Total)        | µg/L | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.33           | 5.8                                                                                                                                                                                                                                                                                                                                                                                 | 6.7                                                                                                                                                                                                                                                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                           | 9.61            | 5.7                                                                                                                                                                                                                                                                                  | 5.6                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                            | 3.61            | 6.2                                                                                                                                                                                   | 6.3                                                                                                                                                       | 7                                                                                                                             | 6.71            | 8.5                                                                                    | 8.5                                                        | 11                             | 15.46           |
| Mercury (Total)          | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Nickel (Total)           | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Silver (Total)           | µg/L | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | <lor< td=""><td>NC</td><td><lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | NC              | <lor< td=""><td>0.2</td><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                 | 0.2                                                                                                                                                                                                                                                      | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<> | <lor< td=""><td>NC</td><td><lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<></td></lor<> | NC              | <lor< td=""><td><lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""><td>NC</td></lor<></td></lor<> | <lor< td=""><td>NC</td></lor<> | NC              |
| Zinc (Total)             | µg/L | <lor< td=""><td><lor< td=""><td>4</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                           | <lor< td=""><td>4</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                          | NC              | <lor< td=""><td><lor< td=""><td>3</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | <lor< td=""><td>3</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                                         | 3                                                                                                                                                                                                                                                                                                                           | NC              | <lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | <lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>                                                       | 2                                                                                                                                                                                                                            | NC              | <lor< td=""><td><lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<></td></lor<>                                     | <lor< td=""><td>2</td><td>NC</td><td><lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<></td></lor<>                                     | 2                                                                                                                             | NC              | <lor< td=""><td><lor< td=""><td>3</td><td>NC</td></lor<></td></lor<>                   | <lor< td=""><td>3</td><td>NC</td></lor<>                   | 3                              | NC              |

## Table 3-7 QA/QC – RPD Calculations for Field Triplicates

Orange highlight = value >50% acceptance criteria; green highlight = <LOR; NC = not calculated as one or more values <LOR



## 4 Discussion

The measured behaviour of sediment plumes generated by maintenance dredging and dredged material disposal by the *TSHD Brisbane* during the November-December 2018 campaign was consistent with past data collection campaigns and modelling-based predictions carried out by BMT WBM (2014a, 2014b, 2015 and 2017). The key findings of these studies are as follows.

## 4.1 Turbid Plumes at Sensitive Ecological Receptor Sites

## 4.1.1 Neap Tides

BMT WBM (2014a) identified and mapped the distribution of key sensitive ecological receptors within and adjacent to Port Curtis. The two key sensitive ecological receptors in the context of dredge plumes were:

- Reefs particularly corals and algae, which require light for energy production and are therefore sensitive to sediment loading.
- Seagrass which also require light for energy production and therefore may be affected by high sediment concentrations.

Whilst such sensitive ecological receptors do not inhabit dredged facilities they often grow where dredge plumes can potentially pass over in the prevailing tidal currents. Dredge plumes may reduce the ability for sunlight to reach these reef and seagrass communities which can adversely impact on their health. Furthermore the suspended sediments within the plumes have the potential to settle onto such communities again adversely impacting on their health.

Consistent with modelling predictions, field measurements carried out in the present study confirmed that turbid plumes created by dredging and disposal operations during neap tides were transient features measurable for less than a few hours. At Golding Channel, for example, depth-averaged TSS concentrations at the deep water seagrass site were over 30 mg/L, but subsided to background levels within 1.5 hrs, consistent with previous measurements in 2014 (BMT WBM 2015). Given the rapid dispersion of this plume, it is unlikely that any deep water seagrass meadows would be harmed by the maintenance dredging operations over the measured neap tides. The plume did not advect to existing seagrass communities or reef habitats, including those at Jacobs Channel (see Figure 3-1).

The results of the present study therefore support the impact hypothesis that: 'Sediments generated during dredging and disposal do not subsequently reach sensitive areas in amounts that would be harmful to the ecological value and amenity of the area'.

## 4.1.2 Spring Tides

The monitoring works presented in this study were conducted during neap tides when the ambient concentration of suspended sediment was minimal. This made it possible to easily measure the dredge plumes. During spring tides, when the tidal currents are significantly stronger, the potential for dredge plumes to reach sensitive ecological receptors is greater. This is because the relatively stronger currents have the potential to maintain the sediments in suspension longer and advect them



further from the dredge material loading sites. However, dredge plumes are difficult to detect above the high background turbidity during spring tides in Gladstone harbour.

On this basis, the plume measurements conducted in this study cannot be directly used to assess the potential impacts to sensitive receptors during spring tide conditions. Modelling studies such as BMT WBM (2017) which are calibrated using field monitoring data should be used for such assessments.

## 4.2 Other Water Quality Parameters

## 4.2.1 Physical Parameters

The measurements of physical parameters were consistent with the maintenance dredge plume monitoring undertaken in February 2014 (BMT WBM 2014b) and November 2014 (BMT WBM 2015).

No major differences between the temperature, salinity, pH or dissolved oxygen were detected between the water quality profiles conducted pre-dredging (baseline conditions) and those targeting dredge plumes. These parameters remained relatively constant throughout the water column, reflecting the well mixed, marine-dominated nature of waters within Port Curtis and EBSDS.

The average and peak turbidity and TSS within the plume profiles were higher than the baseline values at all locations, as described in Section 4.1. TSS concentrations in the plume samples often exceeded the QWQG GV of 15 mg/L, as also frequently occurs during the spring tides throughout Port Curtis and during wave events offshore by concentrations of naturally resuspended sediments (BMT WBM 2015). As discussed in the QWQG, the GVs for most physico-chemical stressors is based on long term (seasonal, annual) percentile (20<sup>th</sup>, 50<sup>th</sup>, 80<sup>th</sup>) values from reference sites. Dredge and disposal plumes are short-term features, lasting no more than several hours, which are therefore highly unlikely to substantially alter long term (seasonal, annual) turbidity metrics at dredge and disposal sites. On this basis, sediment plumes created by dredging and disposal are unlikely to affect the capacity for a site to meet QWQG GV value at seasonal and annual time-scales.

## 4.2.2 Nutrients

The present study found that nutrient concentrations in dredging and disposal plumes were typically within the range of baseline conditions. The exception was a short-term increase in total phosphorus and ammonia concentration in the dredge plume at the Jacobs Channel dredge site, but which declined to near background levels within 30-60 minutes of dredging. An increase in total phosphorus and total suspended solid concentrations occurred between the 60 and 120 minute test intervals, which was inconsistent with the declining trends observed in the prior periods. Total phosphorus and suspended sediments increased across all depth strata between the 60 and 120 minute test intervals at this location, and there was no evidence of a distinct near-bed plume, unlike that created by dredging. Given the high degree of flushing that would have occurred over this two hour period, it is more likely that the observed increase in total phosphorus and suspended sediments was a product of natural background processes (e.g. natural suspension).

Nutrient concentrations recorded in the present study were lower than recorded by BMT WBM (2014; 2015). BMT WBM (2014; 2015) found that nutrient concentrations were generally higher in the dredge plume water samples compared to those collected during baseline conditions. Total nutrient

concentrations in the plumes were typically two to six times higher than during baseline conditions. Dissolved reactive phosphorus concentrations were typically four to six times higher than the QWQG trigger limit. Exceedances of more than 40 times the water quality trigger limit for dissolved NOx were measured in two plume samples in the Gatcombe and Jacobs Channels, however these were exceptions. It is noted that the baseline NOx concentration was also elevated more than 6 times above the GV in the surface baseline sample in the Wild Cattle Cutting.

There are several factors that could contribute to differences between studies, including spatial differences in sediment types, and temporal changes in sediment nutrient concentrations. Sediment nutrient concentrations can vary over time in response to inputs of material by flood events, natural sediment resuspension processes, as well as the maintenance dredging history of the site. Elsewhere in the GBR region, floods are known to deliver large quantities of sediments and nutrients to nearshore waters, resulting in major increases to sediment nutrient concentrations (Furnas *et al.* 2011). Major flood events occurred in 2011 and 2013, which would have delivered large quantities of catchment derived sediment and nutrients to Port Curtis. The BMT WBM (2014, 2015) occurred one to two years after these large flood events. Since this time there have been only minor floods events in the region, and 2018 experienced drought conditions. There are gaps in the knowledge base regarding the influence of flood-drought cycles on sediment nutrient dynamics in the Port Curtis region.

Concentrations of other bioavailable nutrient species (ortho-phosphorus, nitrogen oxides) were similar between baseline and test samples at all sites. Furthermore, chlorophyll *a* concentrations were consistently low in both baseline and test samples. Thus, algal blooms were not evident and are not expected to occur as a result of the maintenance dredging.

With regard to nutrients and chlorophyll measurements, the results of the present study therefore support the impact hypothesis that: *Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur.* 

## 4.2.3 Metals and Metalloids

As expected, the dredging activities led to suspension of sediments in the water column. As a result, total concentrations of aluminium, iron, and to a lesser extent manganese and zinc were elevated in the dredge plumes, consistent with BMT WBM (2015). In almost all cases, total metal/metalloid concentrations were far greater than the dissolved, bioavailable fraction, indicating that most metals were bound to sediments (i.e. particulate forms). Particulate forms of metals and metalloids are typically not readily bioavailable, i.e. they are not taken up by organisms or likely to cause direct biological effects.

Some forms of dissolved metals/metalloids are bioavailable and therefore able to cause direct biological effects. The results of the present study found that most dissolved metals and metalloids were either below the laboratory detection limits or below their respective ANZECC/ARMCANZ (2018) GV in test plume and baseline samples. The exception was dissolved copper, which had two samples (one background, one test sample, both at Jacobs Channel) with concentrations above the ANZECC/ARMCANZ (2018) GV. In both cases, the dissolved fraction was greater than the total fraction, therefore results from both samples are flagged as 'suspect'. Such anomalies can occur at low concentrations that are near the laboratory LOR, as occurred here.

With regard to metals and metalloids measurements, the results of the present study therefore support the impact hypothesis that: *'Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur.'* 

## 4.3 **Recommendations**

The results of the present study are consistent with previous modelling and monitoring assessments which suggest that dredge plumes are transient features that are typically restricted to within and directly adjacent to the dredge channel and the EBSDS, and do not pose a significant risk to aquatic ecosystems. The risk of plume impacts to aquatic ecosystems is largely dependent on:

- The physical and physico-chemical characteristics of dredged material.
- The proximity of the loading and disposal site to sensitive receptors, which also varies spatially, and in the case of seagrass, temporally.

The results of the present study, which are consistent with previous studies, demonstrate that dredging and disposal plumes do not lead to impairment to environmental quality. On this basis, there is no requirement to proceed to Stage 3 testing in accordance with the monitoring framework set out in Section 4.4.2 of NAGD.

Although not a requirement under NAGD, further sampling could be undertaken to better define the characteristics of dredge plumes under different environmental conditions. A comparison of results from the present study and previous studies suggest that the water quality characteristics of dredge plumes vary over time (especially nutrients and suspended sediments), which is possibly linked to temporal variations in sediment properties (see Section 4.2.2). While it is well known that sediment properties vary spatially throughout the Port area (BMT WBM 2017), temporal patterns are presently unresolved.

It is therefore recommended that dredge plume monitoring be repeated in accordance with the design and methods adopted in the present study. The frequency and timing of sampling should be based on antecedent climatic conditions (especially frequency and intensity of floods) and any major changes to dredging practices. A nominal sampling frequency of 4-5 years should be considered, subject to the timing of flood events.

In addition, it is recommended that duplicate sediment grab samples are collected from the dredge site during the plume monitoring program to characterise the physical and physico-chemical properties of dredged sediments. Sediment quality data should be reviewed together with data collected in GPC's sediment Sampling and Analysis Plan to determine potential linkages between the sediment properties at the dredge site and water quality characteristics of the dredge and disposal plumes.



42

# 5 Conclusion

The monitoring of the plumes generated by the TSHD *Brisbane* during December 2018 as it performed both loading and disposal operations within Gladstone Harbour during the neap tides allowed for:

- The quantification of the behaviour of the dredge plumes and its constituents (sediments, metals, metalloids and nutrients) during these conditions.
- Assessment of the potential exposure of sensitive ecological receptors to dredge plumes during these conditions.
- Assessment of potential exposure of sensitive ecological receptors to dredge disposal at EBSDS.

Consistent with the findings of previous dredge monitoring campaigns at Port Curtis, the results of the present study suggest that plumes generated by dredging and disposal represent short term features (measured in 10s of minutes to hours) and pose a low risk to the environment. In summary:

- Measured suspended sediment concentrations indicate that plume dispersion was rapid (nearbackground within 1.5 hours) and the measured plumes did not interact significantly with any sensitive receptors (noting that monitoring occurred during neap tide conditions).
- Nutrient concentrations were generally similar between test (dredge/disposal) and baseline samples. The exception was a short-term increase in total phosphorus and ammonia concentration in the dredge plume at the Jacobs Channel dredge site, which were near background levels within 30-60 minutes of dredging. A further increase in total phosphorus and suspended solids concentrations was observed at the Jacobs Channel dredge site two hours after dredging, most likely in response to sediment resuspension processes.
- Concentrations of bioavailable nutrient species (ortho-phosphorus, nitrogen oxides) were similar between baseline and test samples at all sites.
- Nutrient concentrations recorded in the present study were lower than recorded by BMT WBM (2014; 2015). This likely reflects changes to sediment nutrient pools over time and space (i.e. different dredge areas). It is hypothesised that the delivery of sediments and nutrients by floods in 2011 and 2013 may have increased the sediment nutrient pool in Port Curtis, resulting in the higher nutrient concentrations in dredge plumes reported by BMT WBM (2014, 2015). Further assessments would be required to test this hypothesis.
- Chlorophyll a concentrations were consistently low in both baseline and test samples. Thus, algal blooms were not evident and are not expected to occur as a result of the maintenance dredging.
- Dissolved oxygen and pH was consistent across test and baseline samples. There is no evidence that dredging lead to dissolved oxygen suppression or created acidic conditions.
- Dredging activities led to suspension of sediments in the water column, increasing concentrations of certain metals in the water column. Consistent with predictions of BMT WBM (2015), concentrations of total metals/metalloids declined over time, as sediment-bound metals quickly settled to the seafloor.



- Concentrations of dissolved metals and metalloids, which is typically the most bioavailable fraction, were typically either below the laboratory detection limits or below their respective ANZECC/ARMCANZ (2018) GV in test plume and baseline samples. The exception was dissolved copper at Jacobs Channel, which was above the ANZECC/ARMCANZ (2018) GV in two test samples. The data for these two samples was flagged as suspect, as total copper concentrations in all three samples were less than the dissolved fraction. Such anomalies can occur at low concentrations that are near the laboratory LOR, as occurred here.
- The results of the present study therefore support the impact hypothesis that:
  - 'Sediments generated during dredging and disposal do not subsequently reach sensitive areas in amounts that would be harmful to the ecological value and amenity of the area'.
  - 'Pollutant concentrations within dredge plumes at the loading and disposal sites do not reach levels where toxic effects or algae blooms could occur.'
- The results of the present study therefore suggest that dredging and disposal plumes do not lead to impairment to environmental quality, therefore it does not trigger the need for Stage 3 testing in accordance with the framework set out in Section 4.4.2 of NAGD.
- Although not a requirement under NAGD, further sampling could be undertaken to better define the characteristics of dredge plumes under different environmental conditions (especially postflooding) and should there be major changes to dredging practices.



## 6 References

ANZECC/ARMCANZ. (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality (Vol. 4) Canberra: Australian and New Zealand Environment and Conservation Council, and Agriculture and Resource Management Council of Australia and New Zealand.

Bryant CV, Davies JD, Jarvis JC, Tol S, Rasheed MA (2014) Seagrasses in Port Curtis & Rodds Bay 2013 – Annual Long Term Monitoring, Biannual Western Basin Surveys & Updated Baseline Survey. Report No. 14/23, Centre for Tropical Water and Aquatic Ecosystem Research, May 2014.

BMT WBM (2009) Port Curtis Reef Assessment Draft Report. Report prepared for Queensland Gas Company.

BMT WBM (2013) Response to DSEWPaC Request for Information for the Port of Gladstone Maintenance Dredging Sea Dumping Permit Application. Report prepared for Gladstone Ports Corporation, June 2013.

BMT WBM (2014a) Modelling and Assessment of the Port of Gladstone Maintenance Dredging and Sea Disposal to Inform Sea Dumping Permit Applications. Report prepared for Gladstone Ports Corporation, August 2014.

BMT WBM (2014b) Monitoring of Maintenance Dredging Plumes – Gladstone Harbour. Report prepared for Gladstone Ports Corporation, July 2014.

BMT WBM (2014c) Monitoring of Maintenance Dredging Plumes – Gladstone Harbour (July 2014). Report prepared for Gladstone Ports Corporation, August 2014.

BMT WBM (2015) Monitoring of Maintenance Dredging Plumes – Gladstone Harbour, November 2014. Report prepared for Gladstone Ports Corporation, March 2015.

BMT WBM (2017) Port of Gladstone Maintenance Dredging - Assessment of Potential Impacts. Report prepared for Gladstone Ports Corporation, December 2017.

Department of Environment and Resource Management. (2009) Queensland Water Quality Guidelines 2009, Version 3. (3 ed., pp. 175). Brisbane: Queensland Department of Environment and Resource Management.

Davies, JD. McCormack, CV. Rasheed, MA (2013) Port Curtis and Rodds Bay seagrass monitoring program. November 2012. JCU Publication. Centre of Tropical Water and Aquatic Ecosystem Research. Cairns.

Furnas M, Alongi D, McKinnon D, Trott L, Skuza M (2011) Regional-scale nitrogen and phosphorus budgets for the northern (14°S) and central (17°S) Great Barrier Reef shelf ecosystem. Continental Shelf Research 31, 1967-1990.

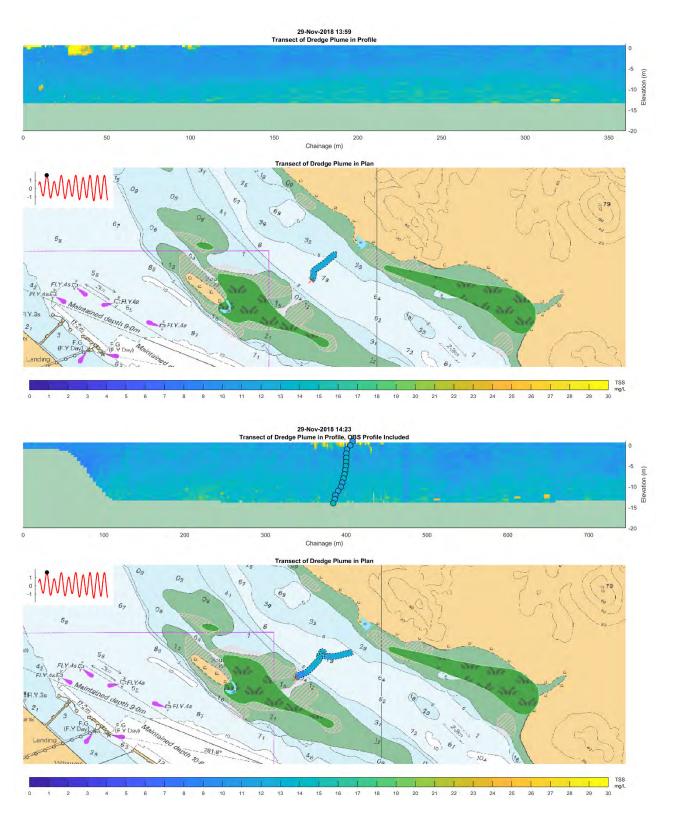
GBRMPA (2014) Great Barrier Reef Marine Park Reefs, available online: <u>http://www.gbrmpa.gov.au/resources-and-publications/spatial-data-information-services/explore-</u> <u>the-gbrmp-with-google-maps</u> Rasheed MA, Thomas R, Roelofs AJ, Neil KM. Kerville SP (2003) Port Curtis and Rodds Bay seagrass and benthic macro-invertebrate community baseline survey, November/December 2002. DPI Information Series QI03058,47 pp.

Thomas R, Unsworth RKF, Rasheed MA (2010) Seagrasses of Port Curtis and Rodds Bay and long term seagrass monitoring, November 2009. (DEEDI, Cairns).

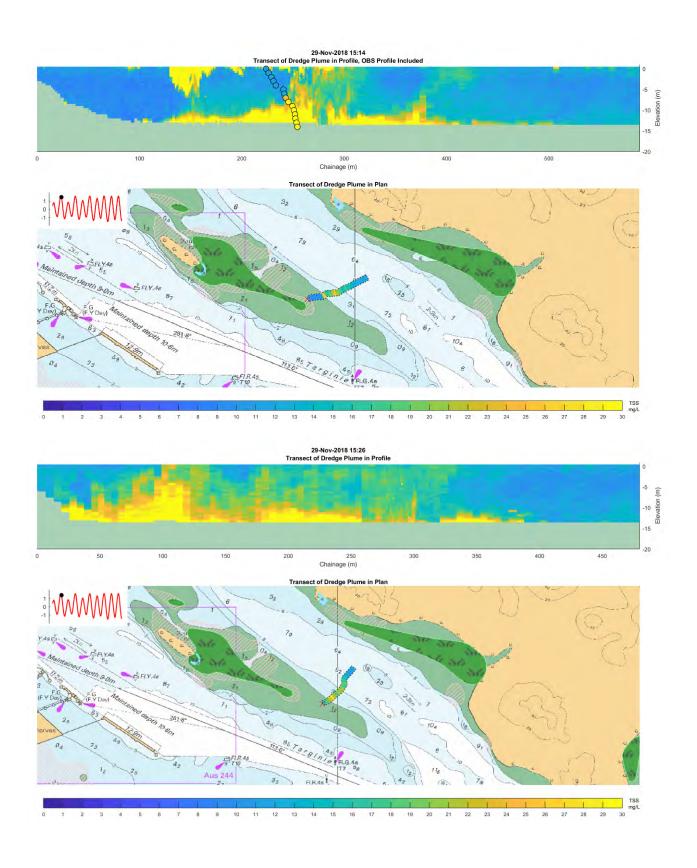


# Appendix A Water Samples, TSS Analysis

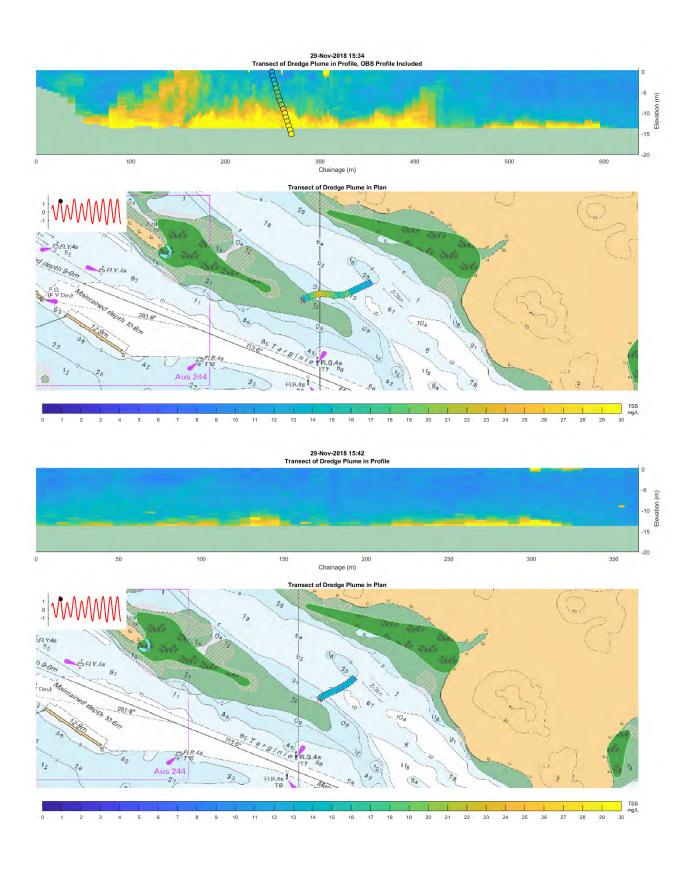
| TIME             | DEPTH (m) | TSS (mg/L) |  |  |  |  |  |
|------------------|-----------|------------|--|--|--|--|--|
| 29/11/2018 13:55 | 1.5       | 13         |  |  |  |  |  |
| 29/11/2018 14:15 | 7.5       | 16         |  |  |  |  |  |
| 29/11/2018 14:20 | 15        | 11         |  |  |  |  |  |
| 29/11/2018 15:10 | 1.5       | 20         |  |  |  |  |  |
| 29/11/2018 15:12 | 8         | 15         |  |  |  |  |  |
| 29/11/2018 15:14 | 15.6      | 57         |  |  |  |  |  |
| 29/11/2018 15:30 | 1.5       | 38         |  |  |  |  |  |
| 29/11/2018 15:32 | 7.5       | 25         |  |  |  |  |  |
| 29/11/2018 15:34 | 15        | 63         |  |  |  |  |  |
| 29/11/2018 15:45 | 1.5       | 14         |  |  |  |  |  |
| 29/11/2018 15:47 | 7.5       | 13         |  |  |  |  |  |
| 29/11/2018 15:49 | 15        | 22         |  |  |  |  |  |
| 29/11/2018 16:15 | 1.5       | 12         |  |  |  |  |  |
| 29/11/2018 16:17 | 8         | 15         |  |  |  |  |  |
| 29/11/2018 16:19 | 9.5       | 26         |  |  |  |  |  |
| 29/11/2018 17:05 | 1.5       | 25         |  |  |  |  |  |
| 29/11/2018 17:07 | 7         | 24         |  |  |  |  |  |
| 29/11/2018 17:09 | 9.5       | 20         |  |  |  |  |  |
| 02/12/2018 06:10 | 1.5       | 6          |  |  |  |  |  |
| 02/12/2018 06:12 | 8         | 4          |  |  |  |  |  |
| 02/12/2018 06:14 | 16        | 6          |  |  |  |  |  |
| 02/12/2018 08:00 | 1.5       | 18         |  |  |  |  |  |
| 02/12/2018 08:02 | 8         | 8          |  |  |  |  |  |
| 02/12/2018 08:04 | 16        | 8          |  |  |  |  |  |
| 02/12/2018 08:15 | 1.5       | 8          |  |  |  |  |  |
| 02/12/2018 08:17 | 8         | 8          |  |  |  |  |  |
| 02/12/2018 08:19 | 16.5      | 8          |  |  |  |  |  |
| 02/12/2018 08:30 | 1.5       | 6          |  |  |  |  |  |
| 02/12/2018 08:32 | 8         | 5          |  |  |  |  |  |
| 02/12/2018 08:34 | 15        | 6          |  |  |  |  |  |
| 02/12/2018 09:00 | 1.5       | 5          |  |  |  |  |  |
| 02/12/2018 09:02 | 8         | 6          |  |  |  |  |  |
| 02/12/2018 09:04 | 16        | 8          |  |  |  |  |  |



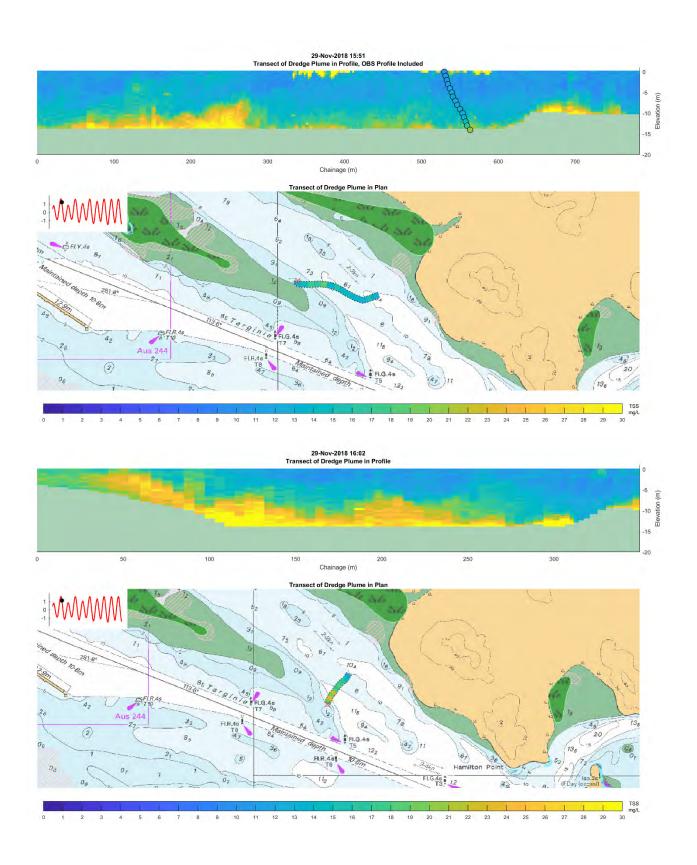




TIME **DEPTH (m)** TSS (mg/L) 02/12/2018 10:00 1.5 6 5 6 02/12/2018 10:02 10 6 02/12/2018 10:04 02/12/2018 13:00 1.5 <1 02/12/2018 13:02 6 <1 02/12/2018 13:04 10 <1 1.5 <1 02/12/2018 13:55 5 02/12/2018 13:57 13 02/12/2018 13:59 10 6 02/12/2018 14:10 1.5 12 02/12/2018 14:12 6 23 02/12/2018 14:14 11 14 02/12/2018 14:25 1.5 8 02/12/2018 14:27 6 20 02/12/2018 14:29 11 17 02/12/2018 14:55 1.5 4 02/12/2018 14:57 6 12 02/12/2018 14:59 11 11 02/12/2018 15:55 1.5 7 7 3 02/12/2018 15:57 5 4 02/12/2018 15:59



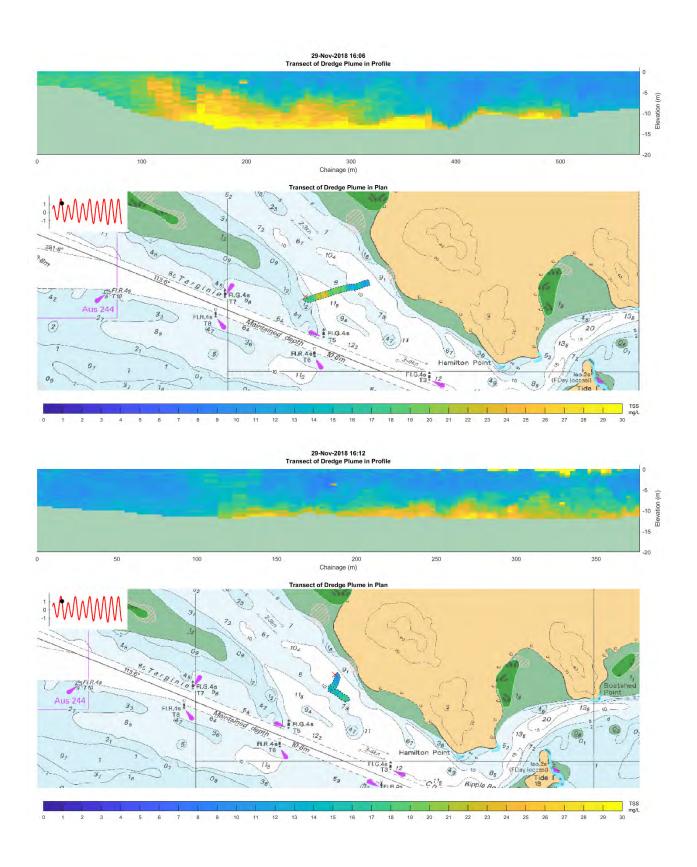

# Appendix B Dredging at Jacobs Channel 29<sup>th</sup> November 2018



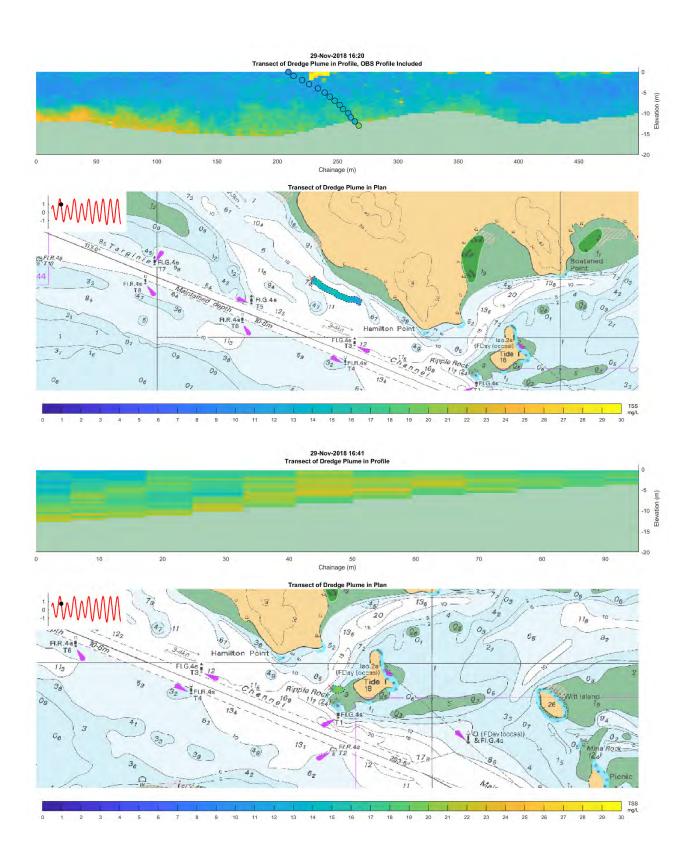




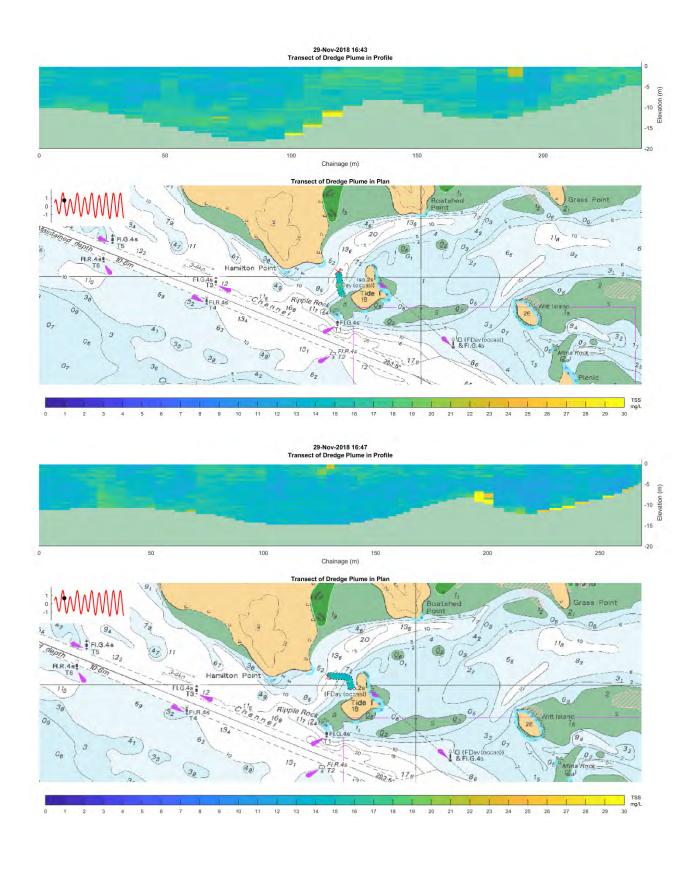


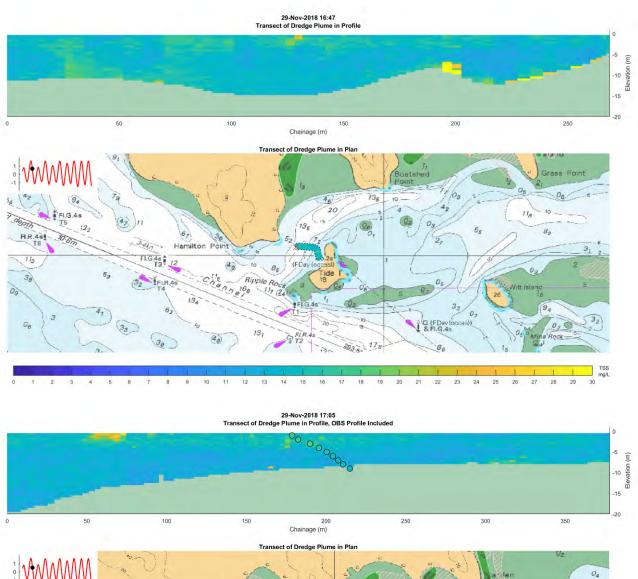


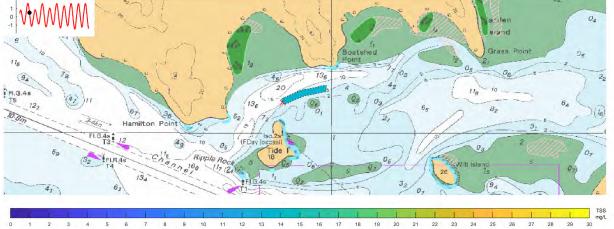







B-4

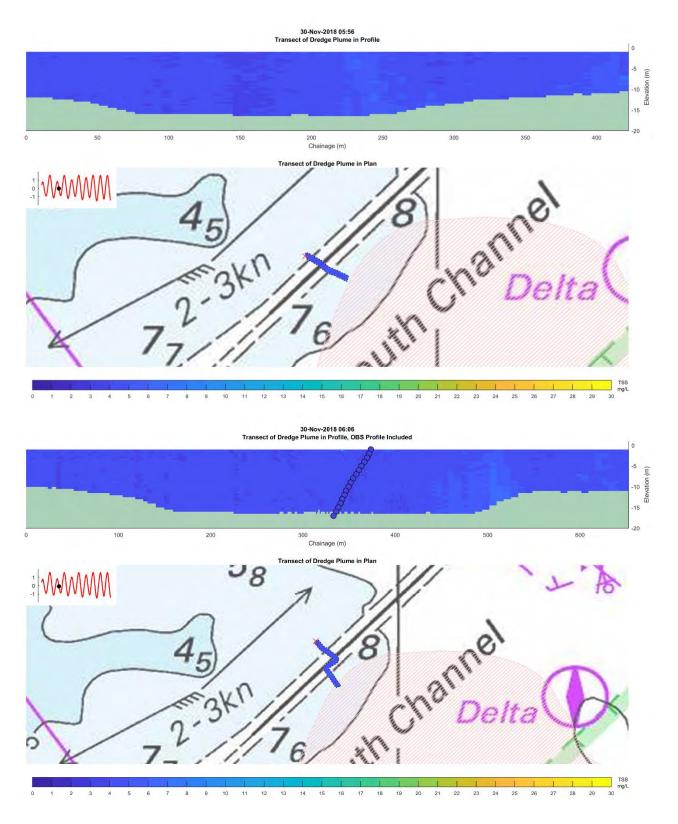




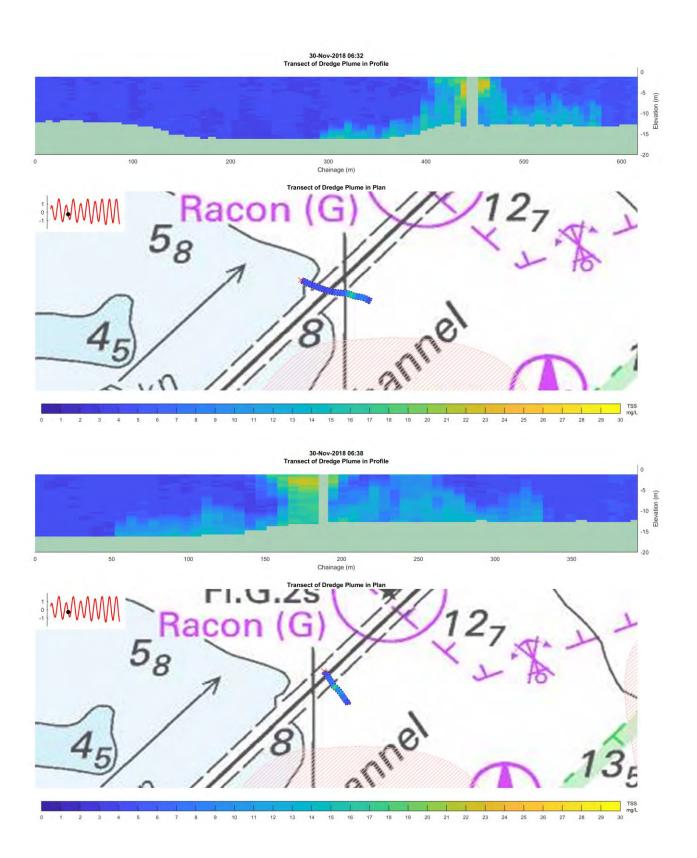





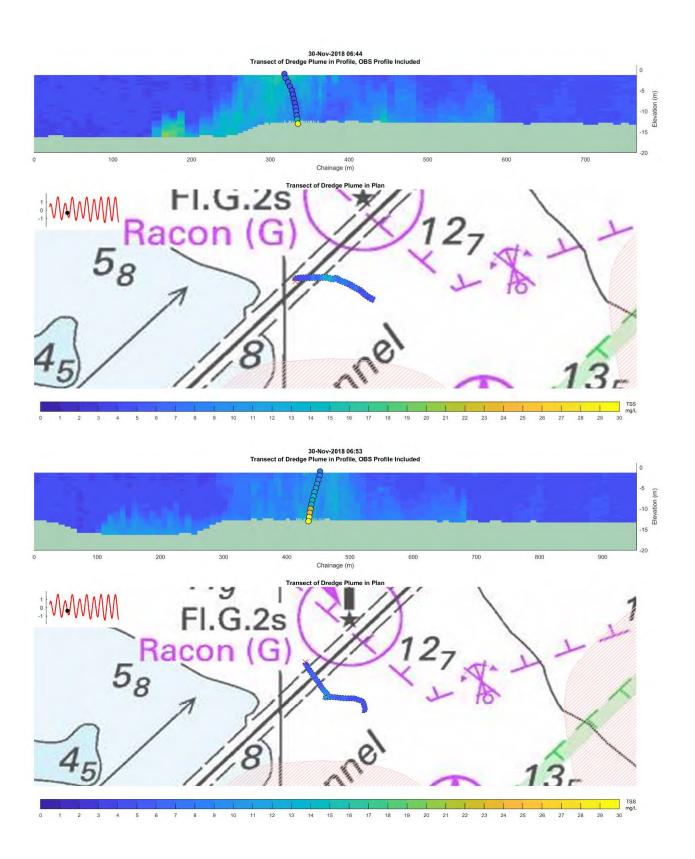


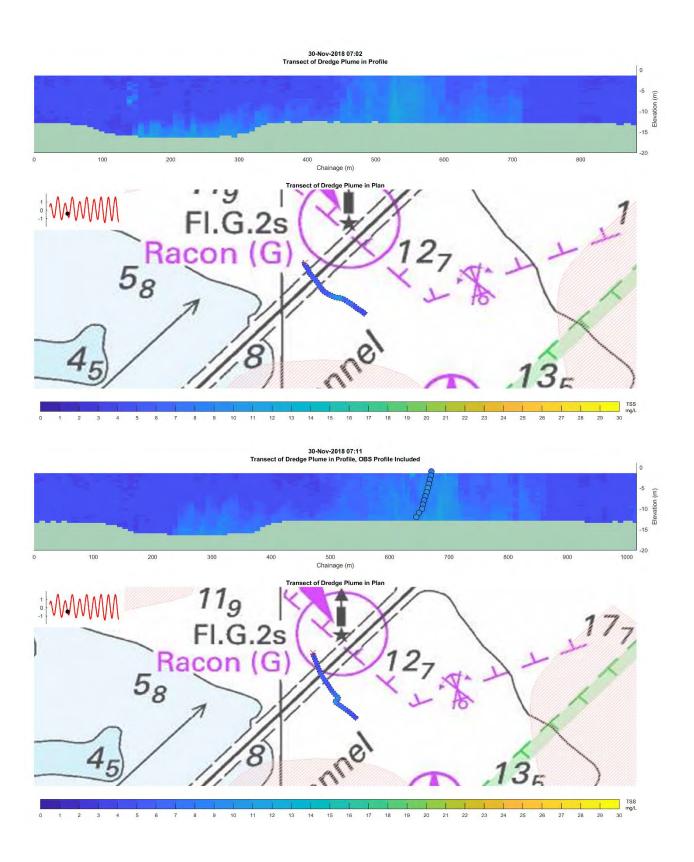


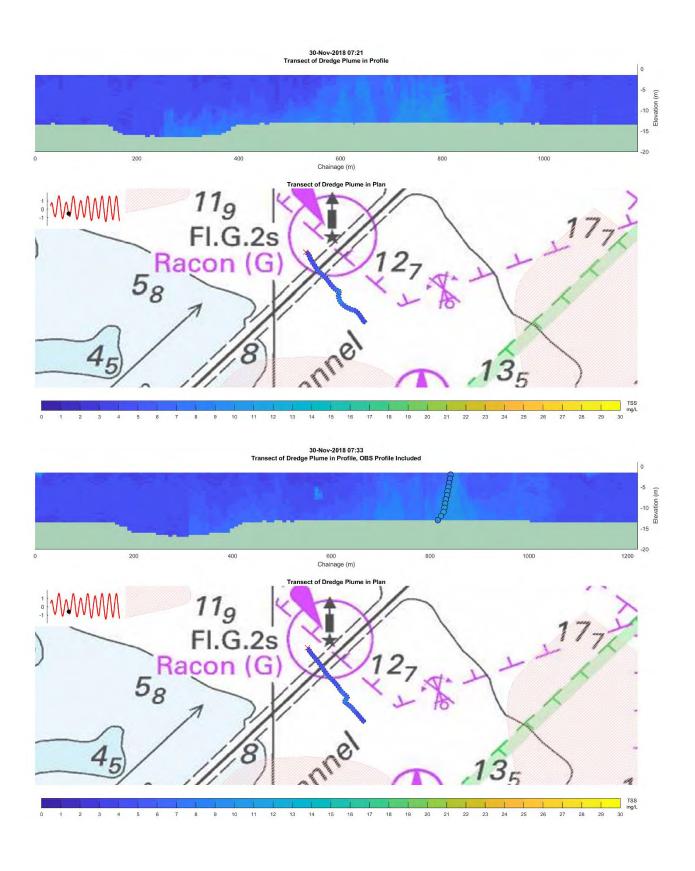




# Appendix C Dredging at Wild Cattle Cutting, 30<sup>th</sup> November 2018

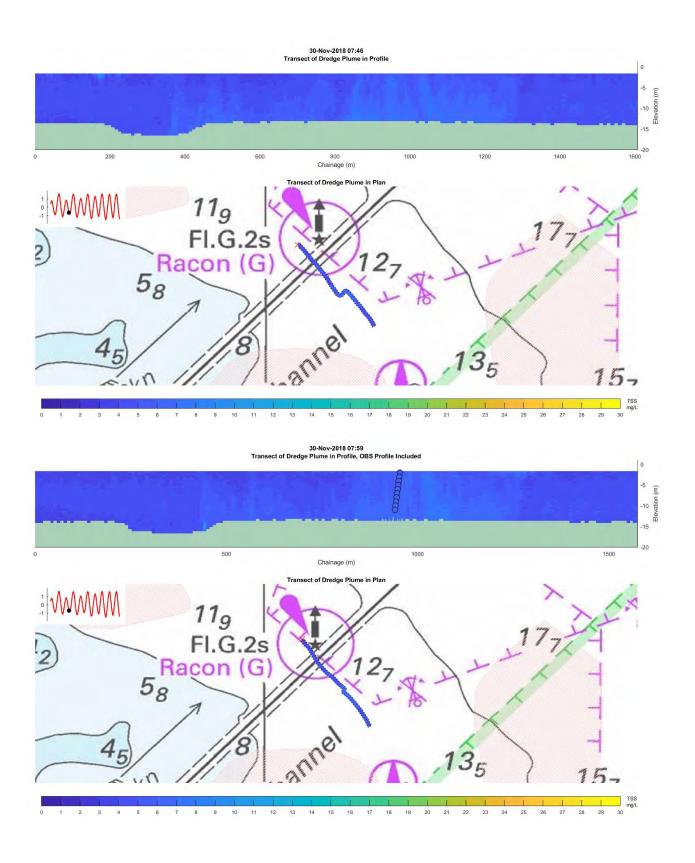




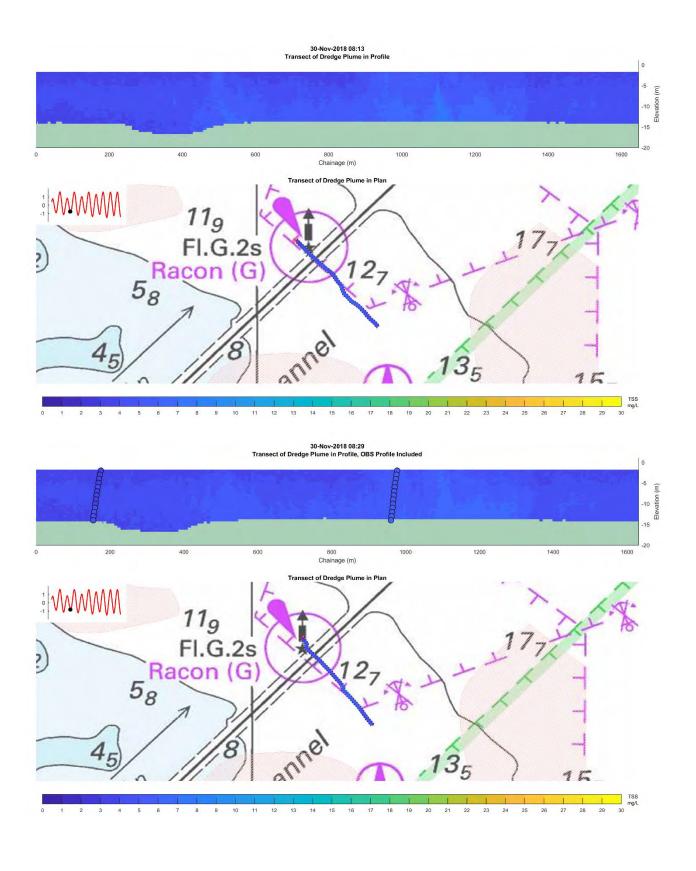




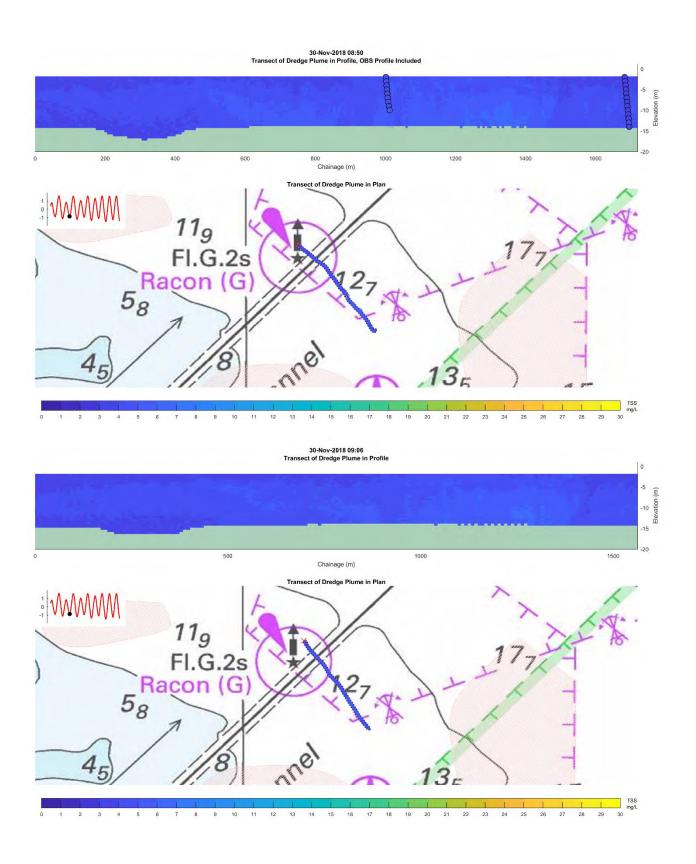





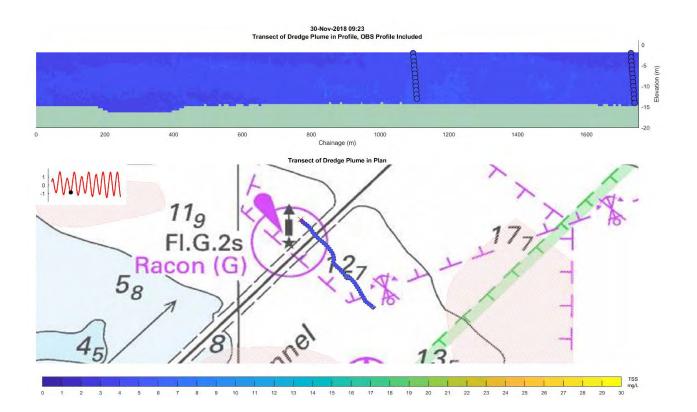




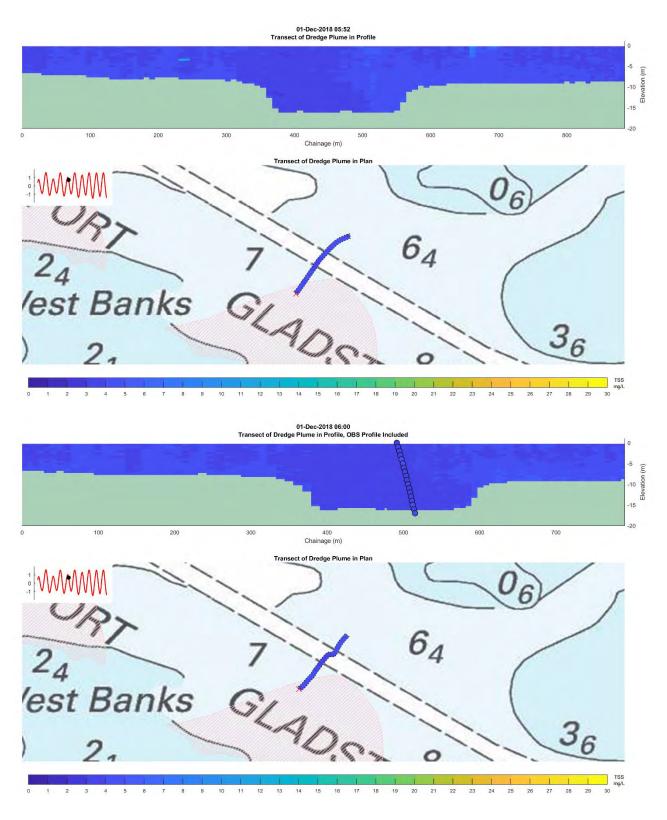





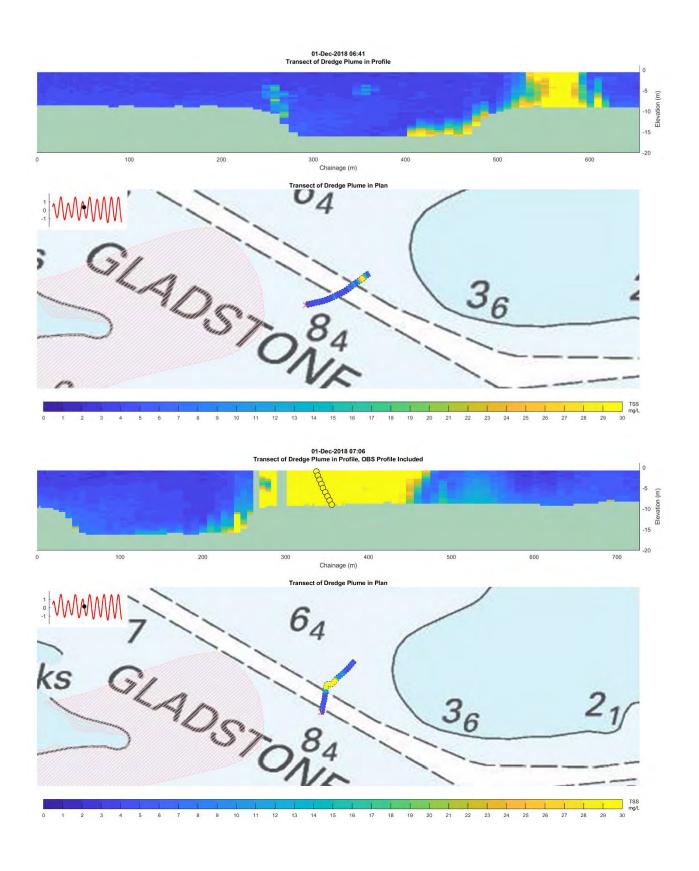


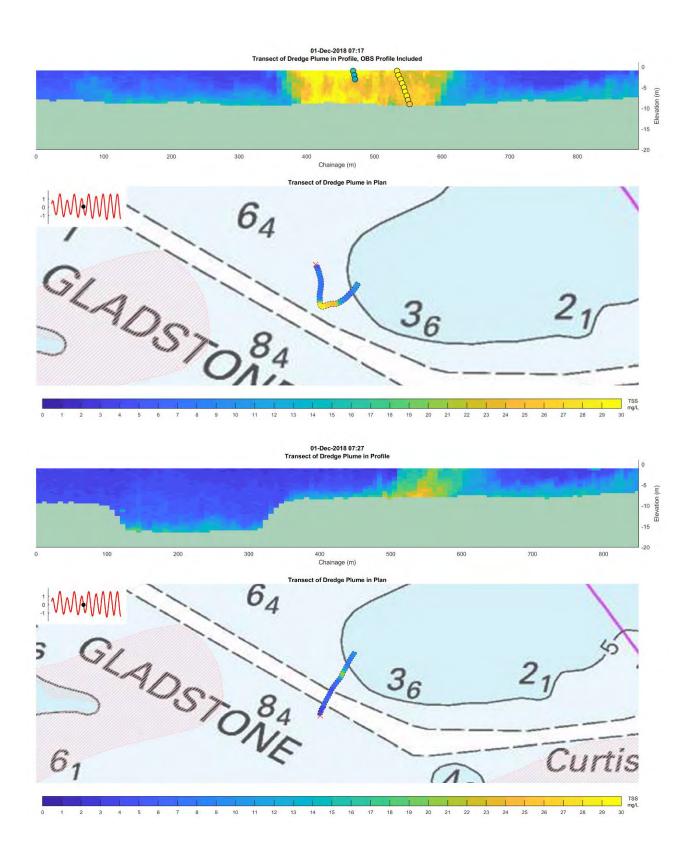

#### Dredging at Wild Cattle Cutting, 30th November 2018

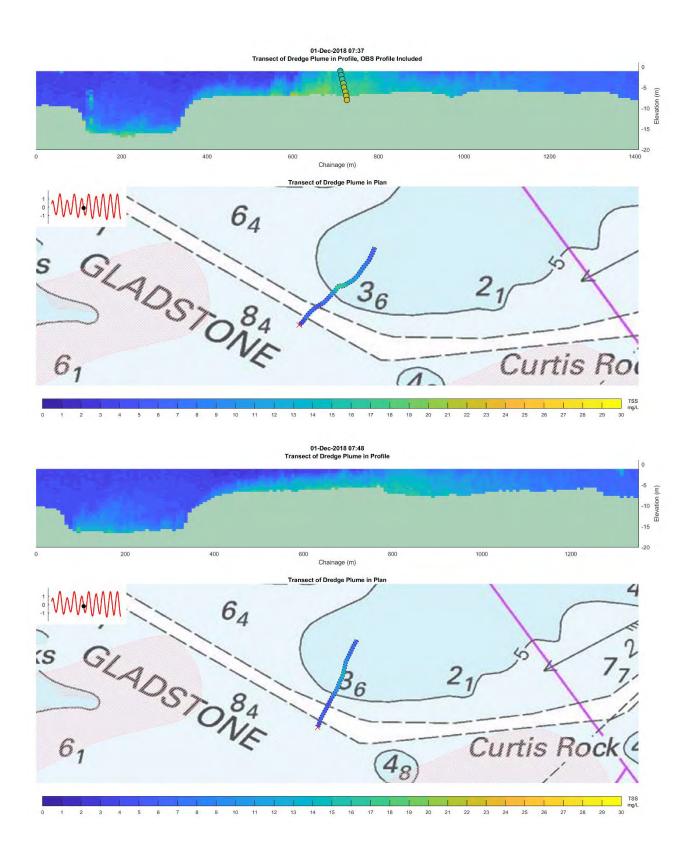




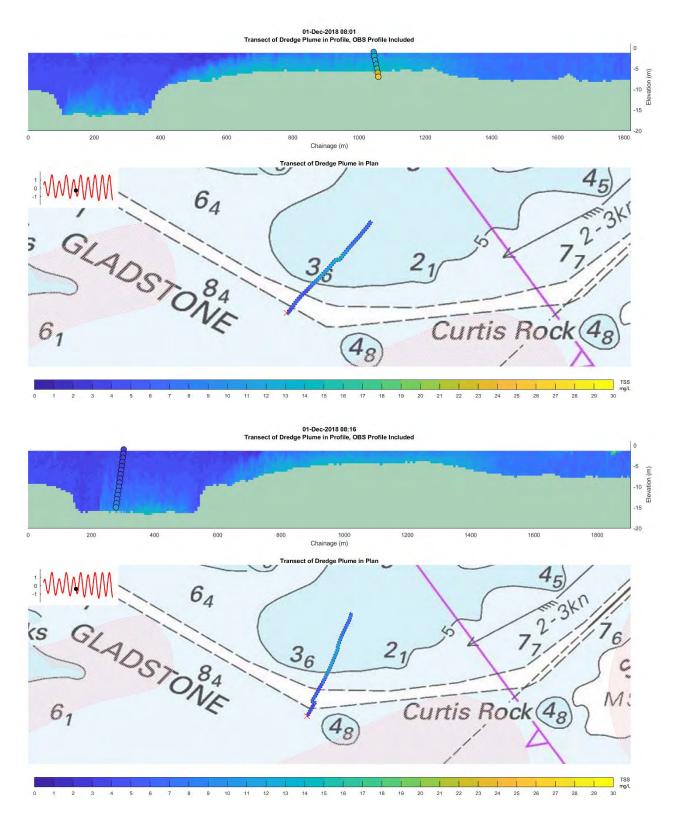


# Dredging at Wild Cattle Cutting, 30th November 2018



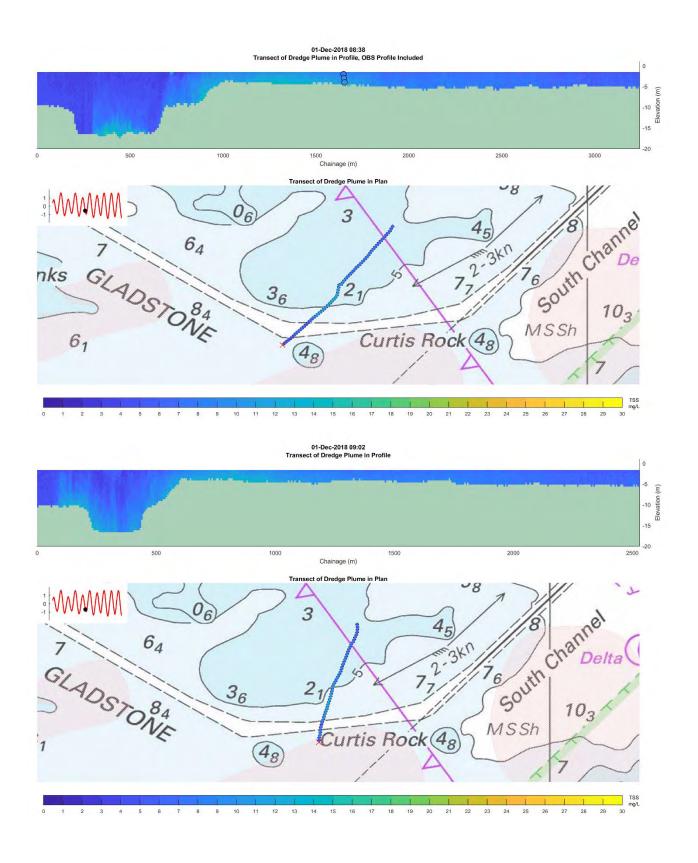

# Appendix D Dredging at Golding Cutting, 1<sup>st</sup> December 2018



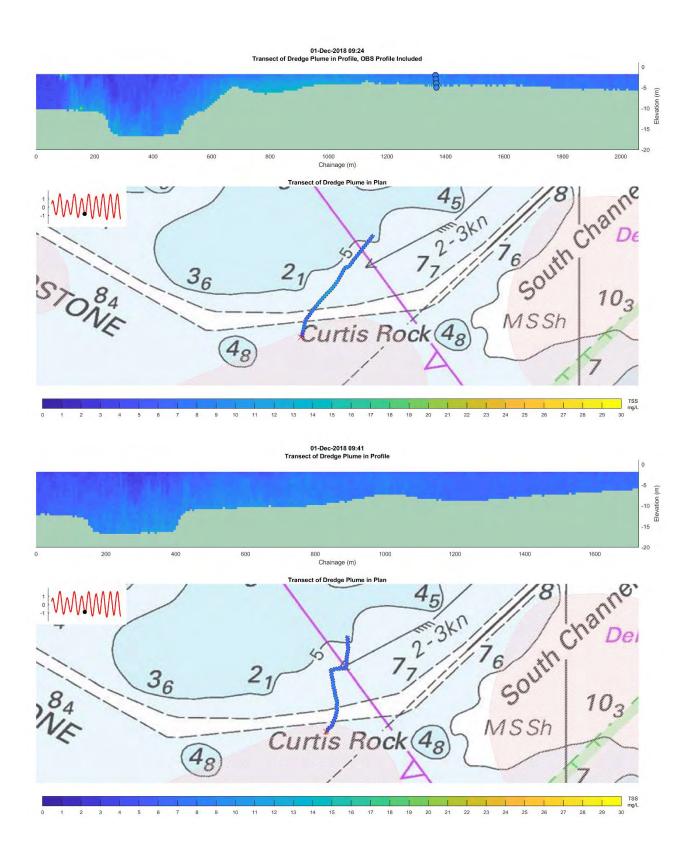


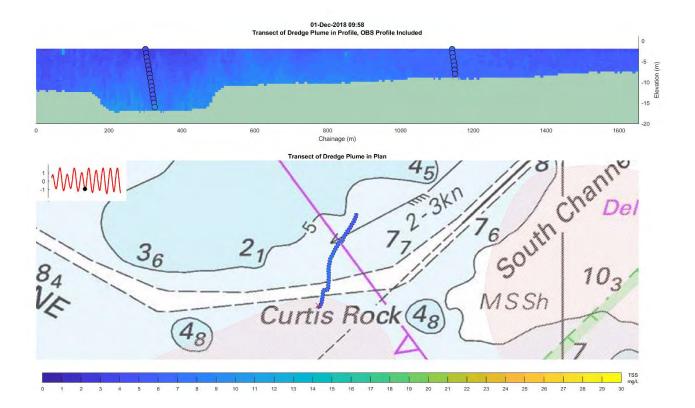




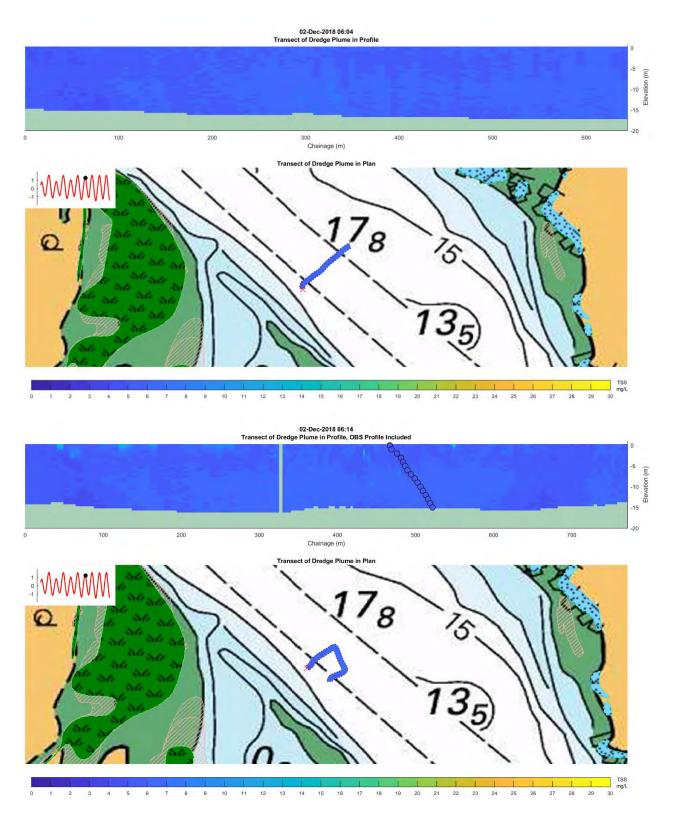





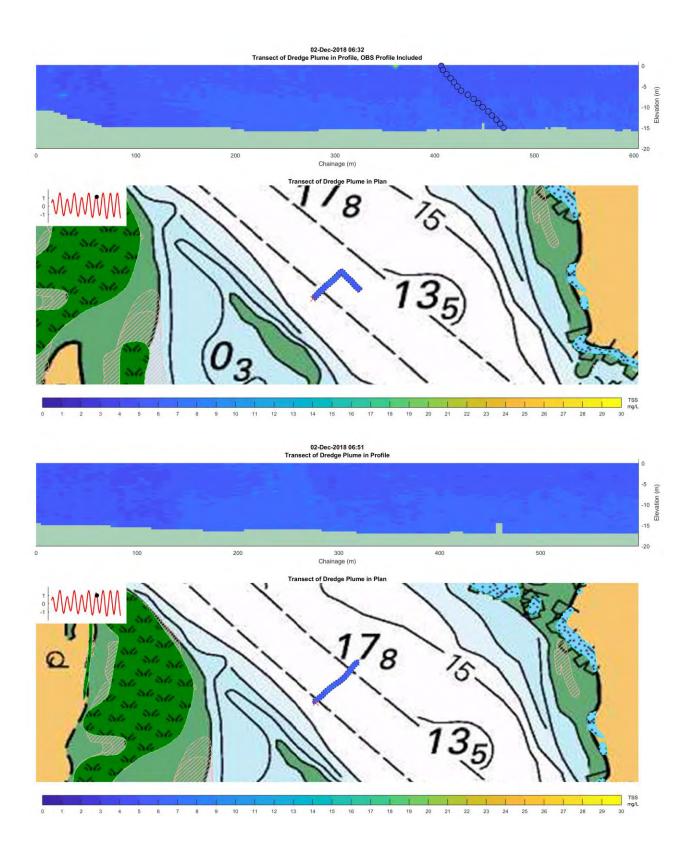





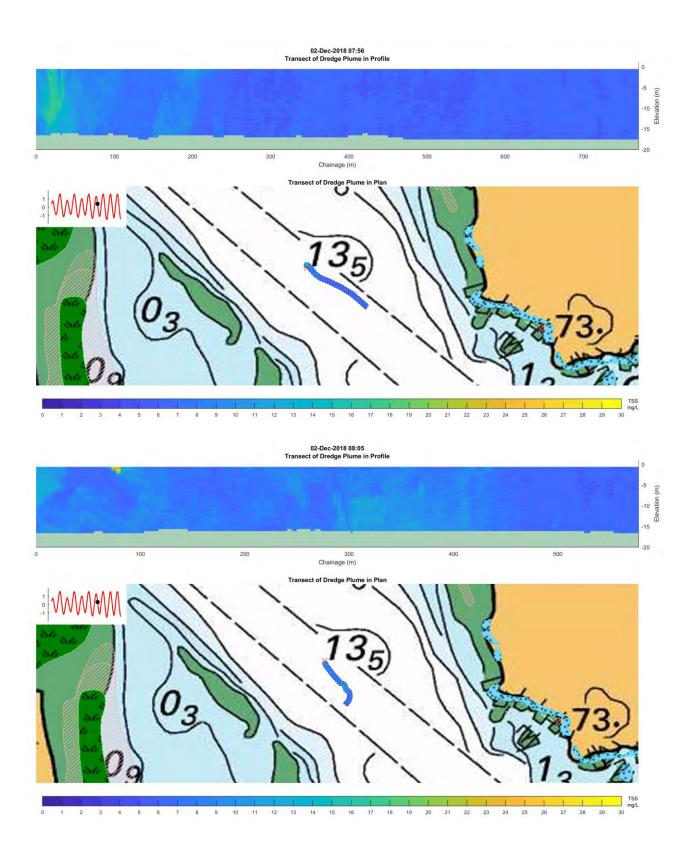


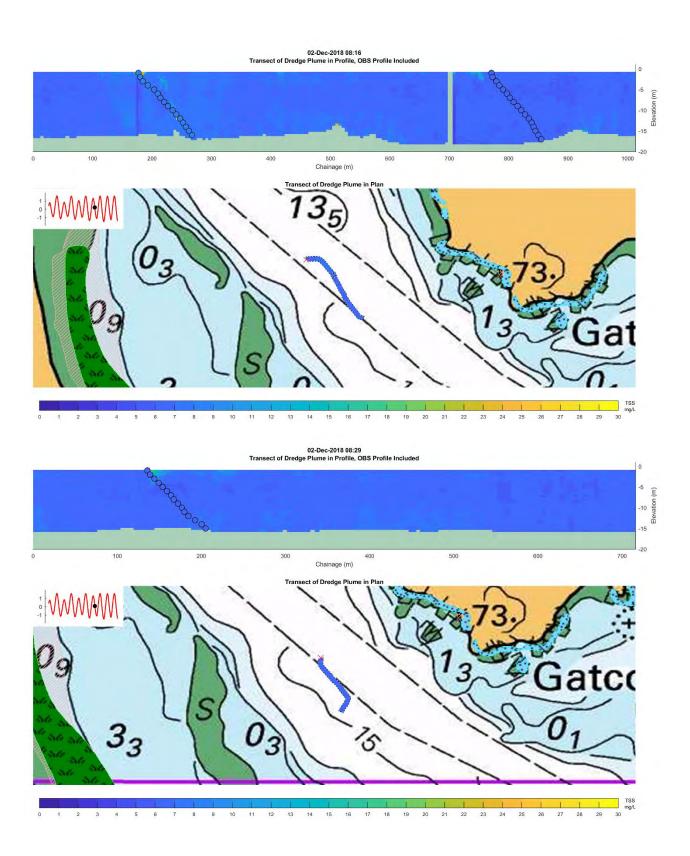


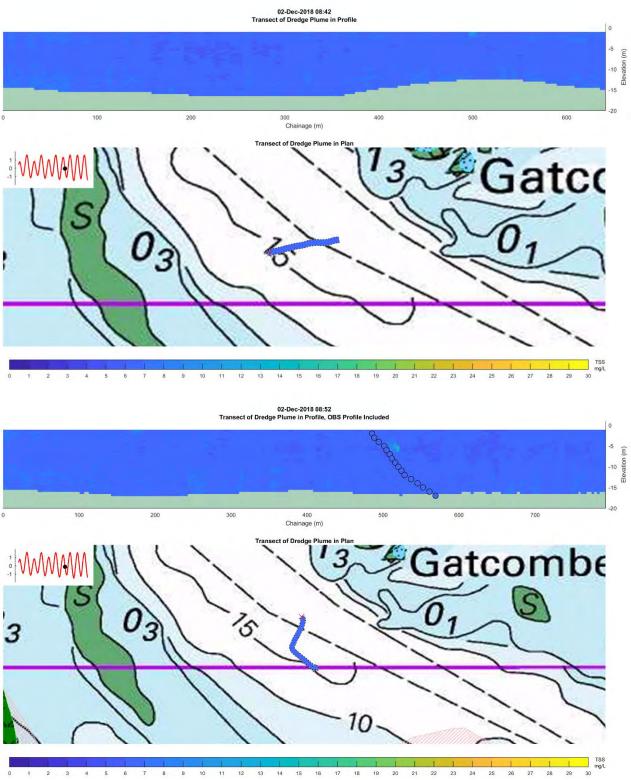




# Appendix E Dredging at Gatcombe Channel, 2<sup>nd</sup> December 2018



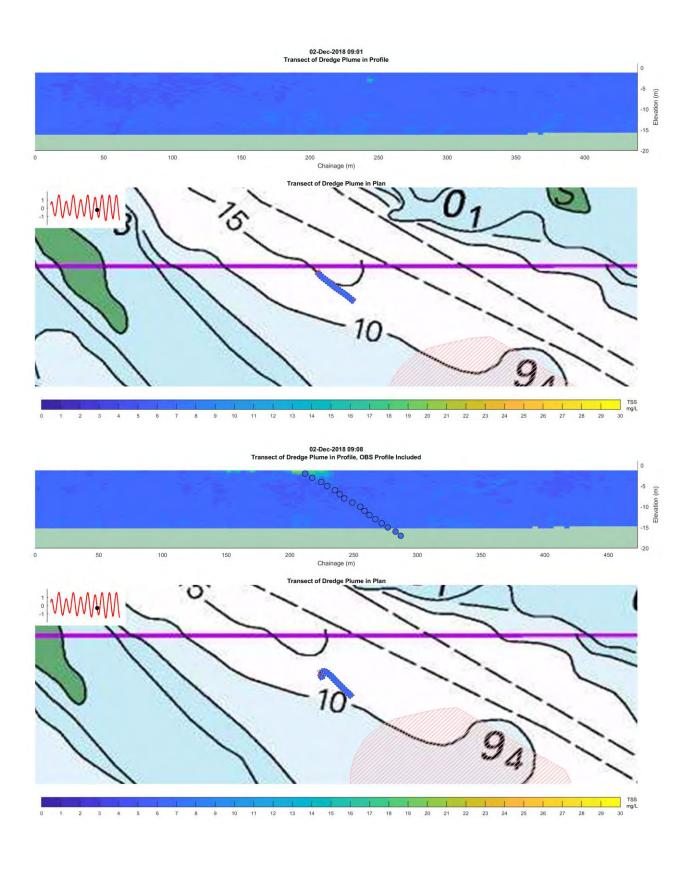




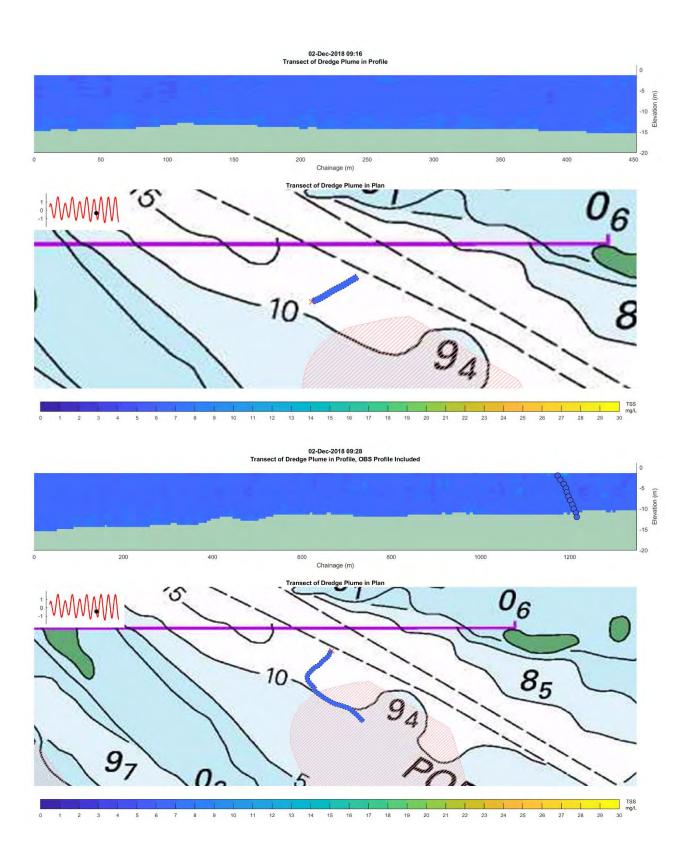





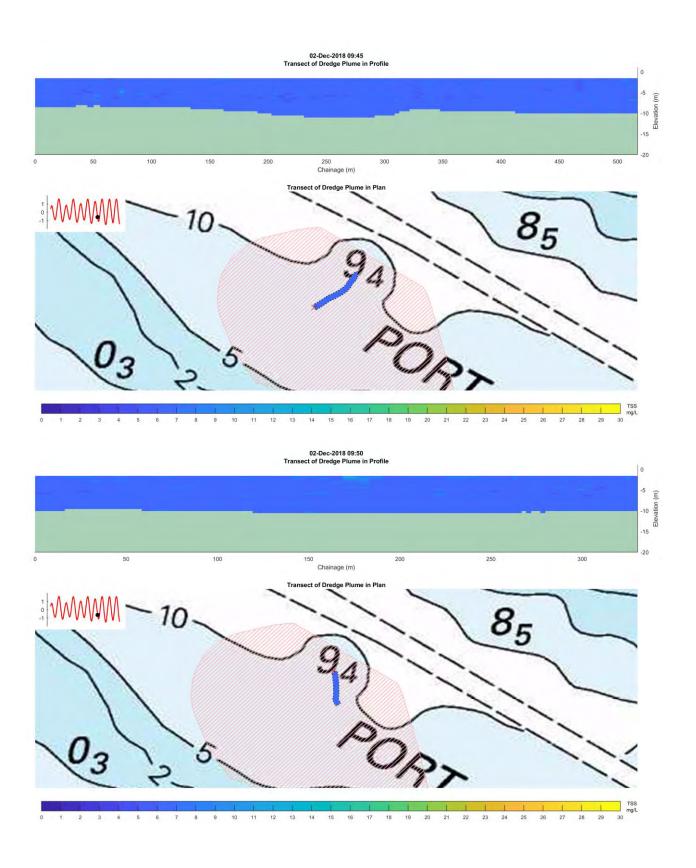


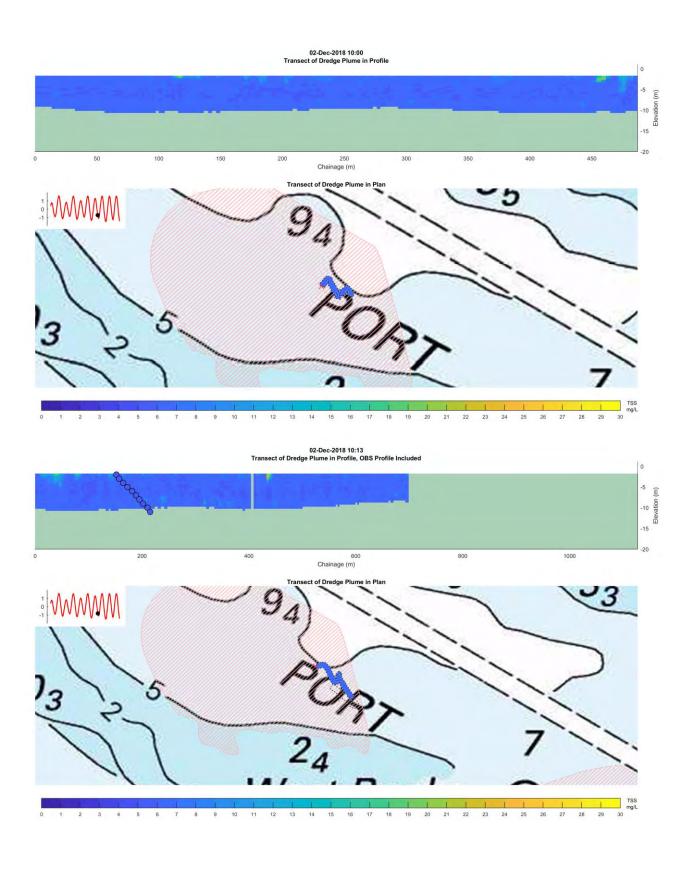


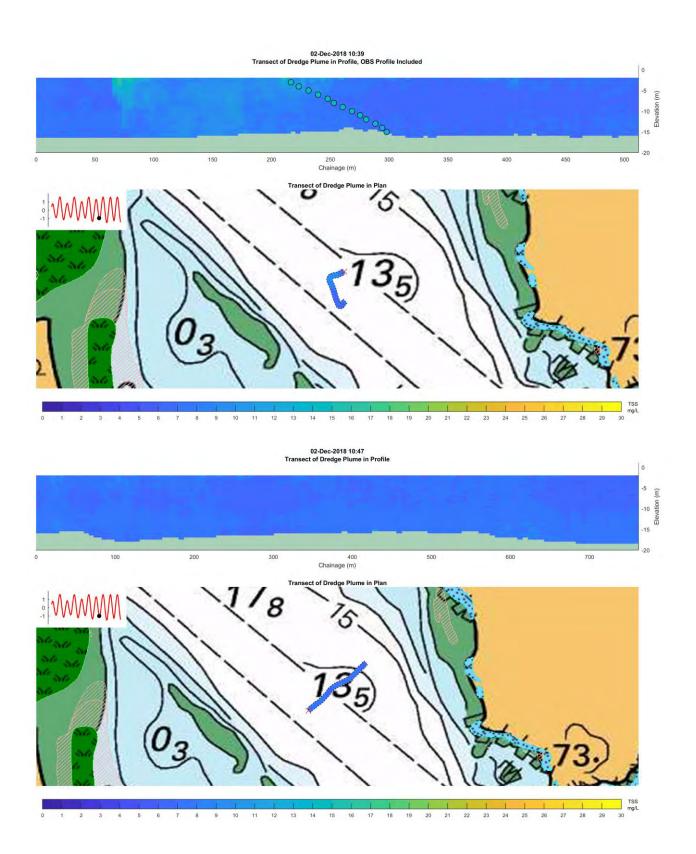




E-5

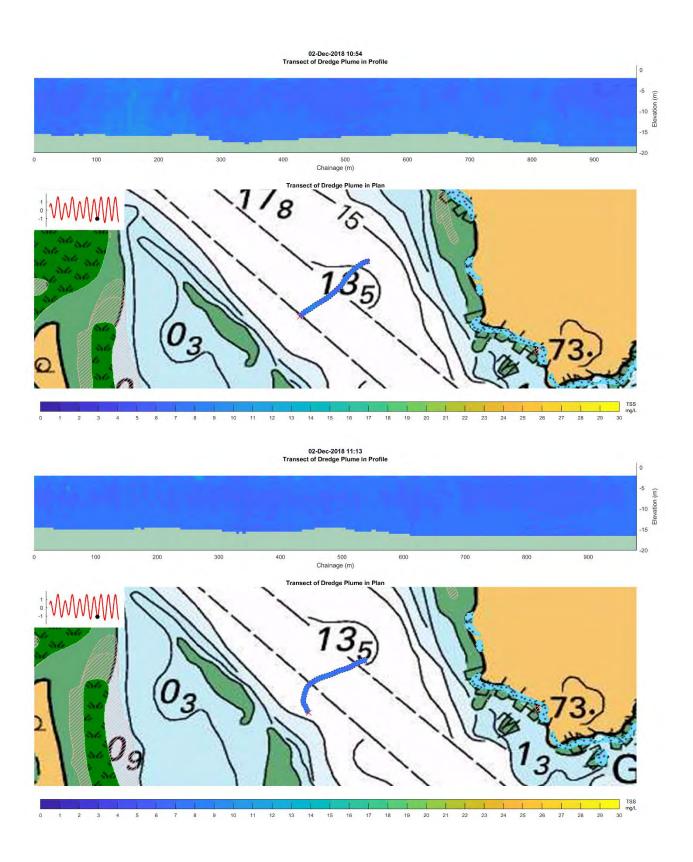




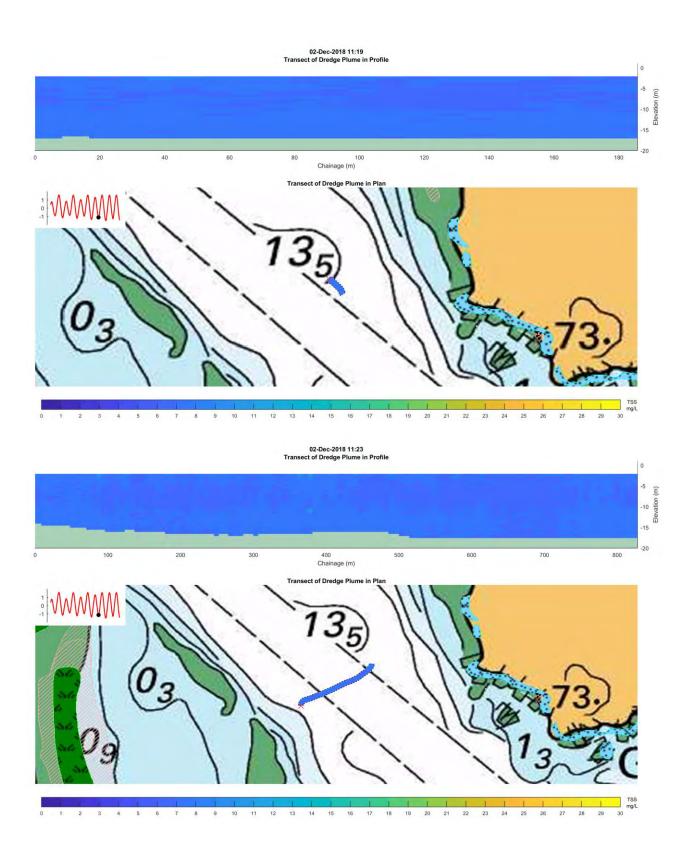


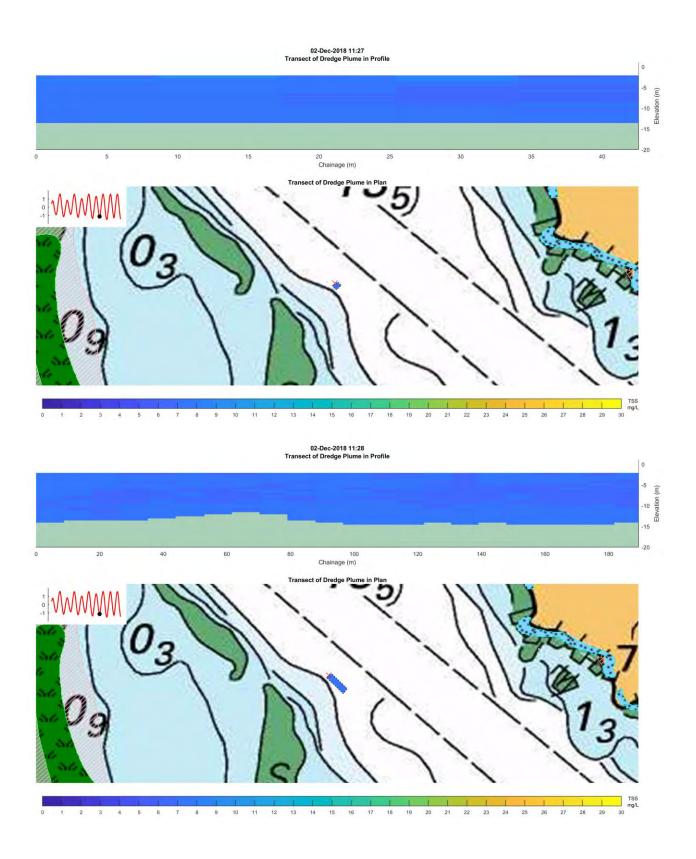


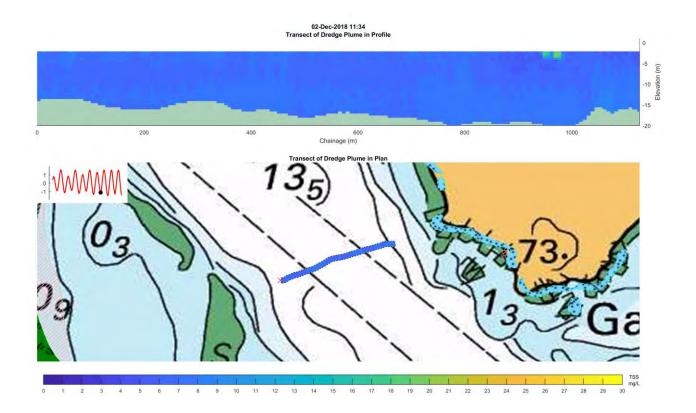




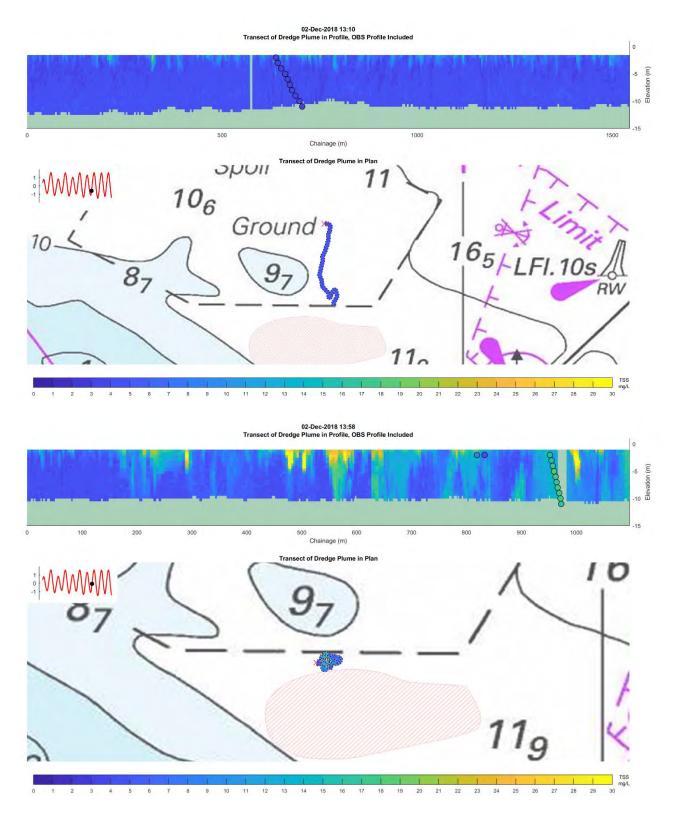





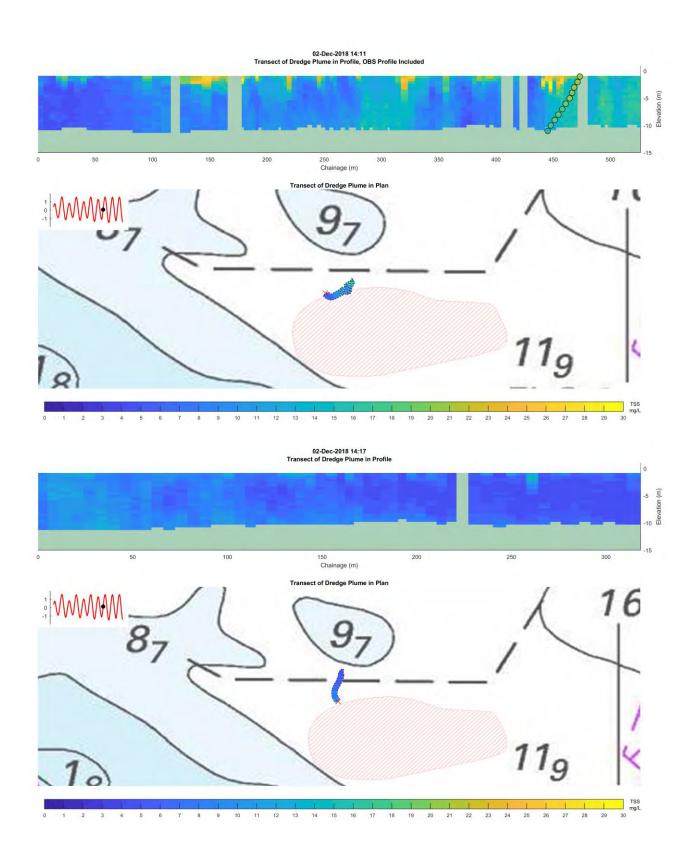





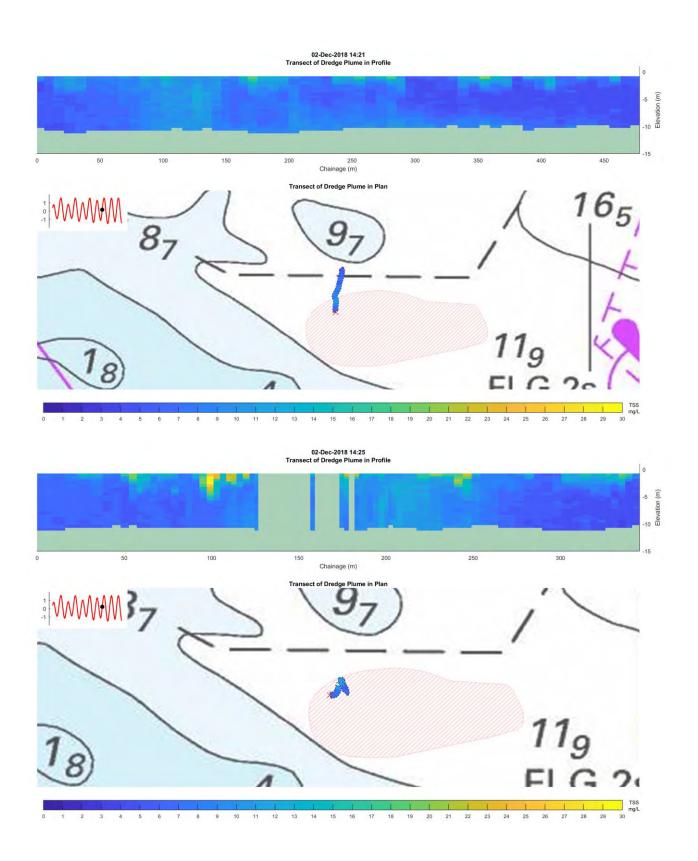


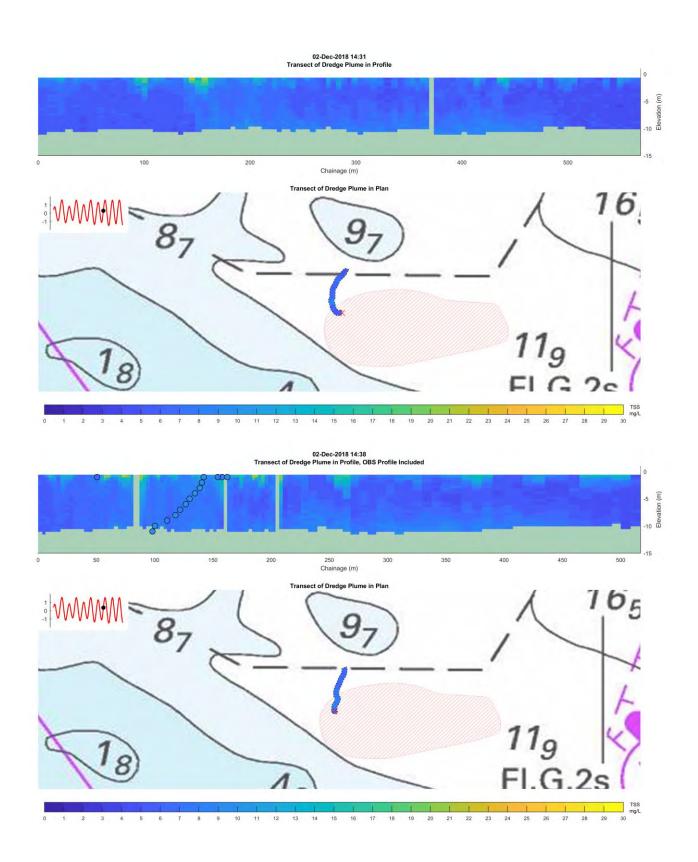






# Appendix F Placement at EBSD

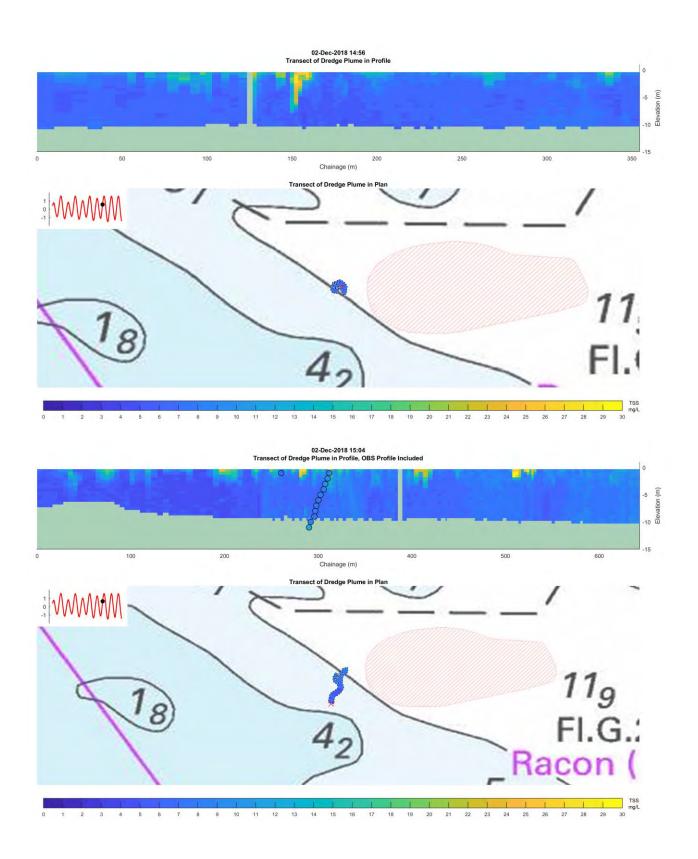




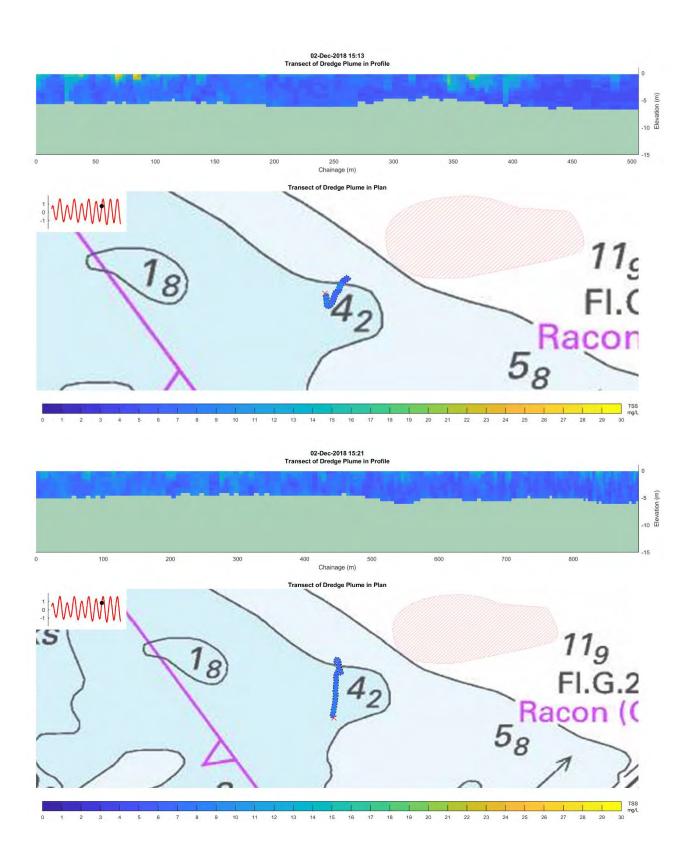




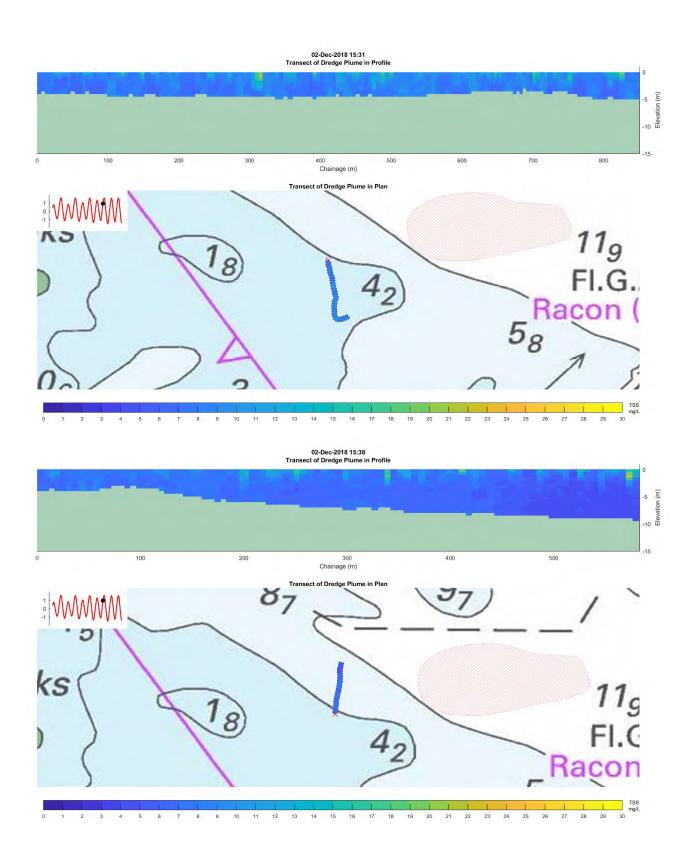


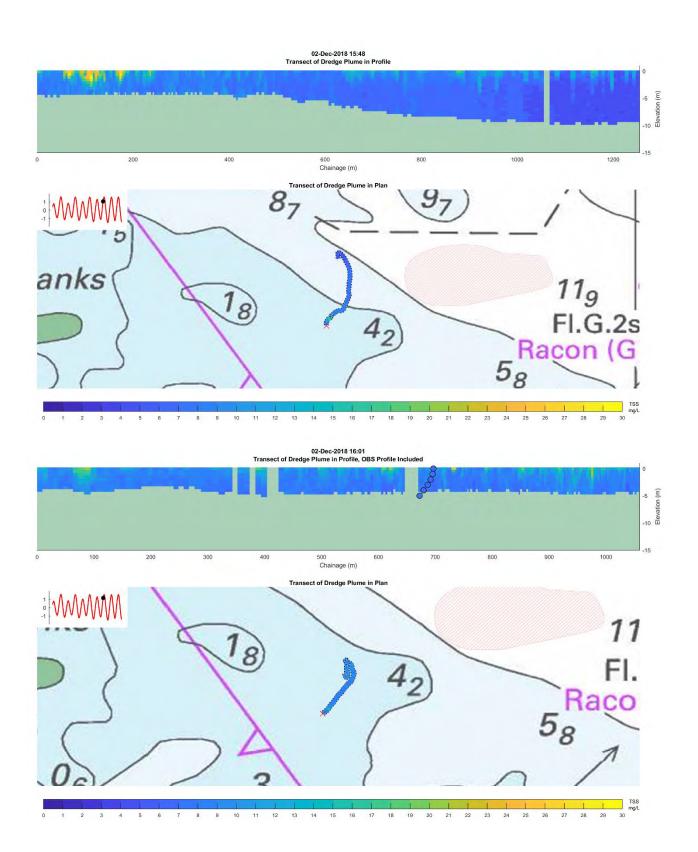


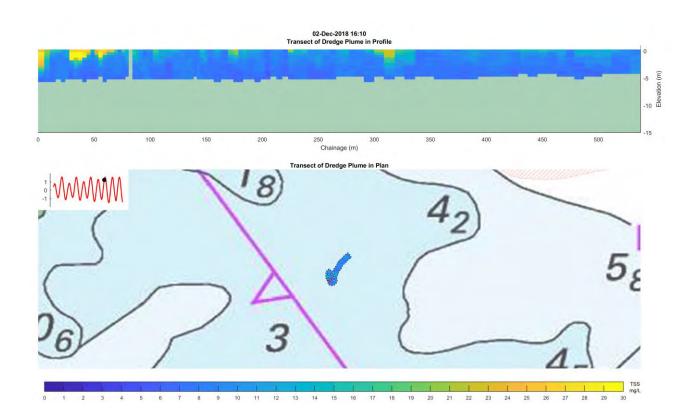


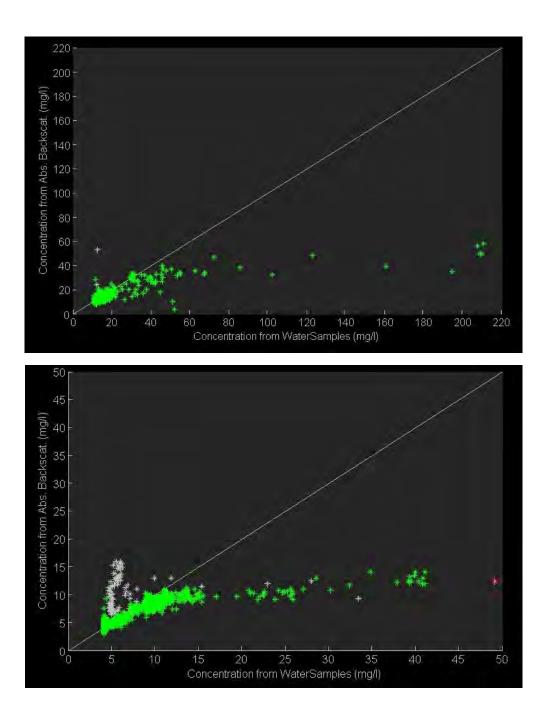


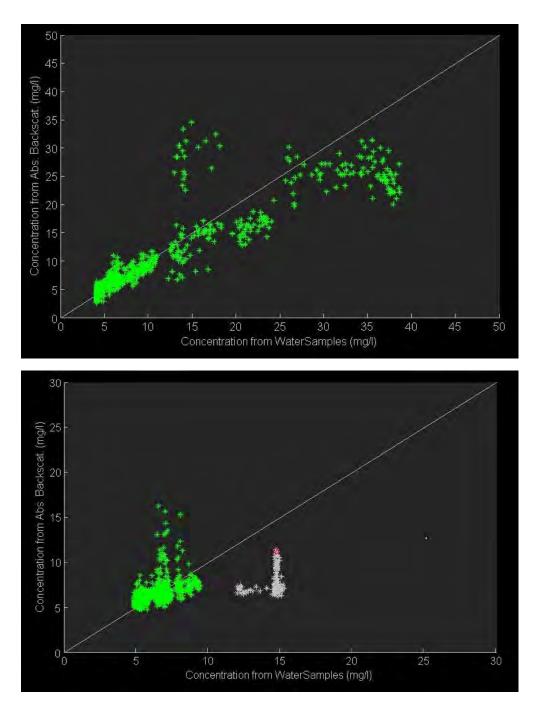


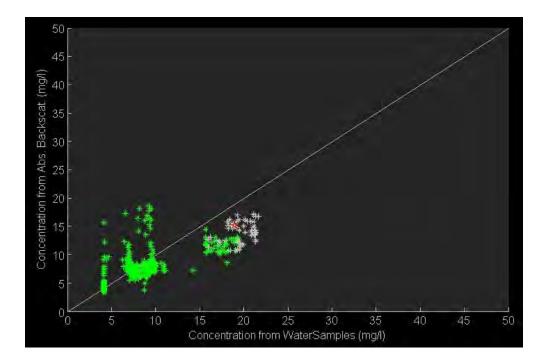








# Appendix G Backscatter – TSS Calibration













G-3

Baseline water quality results, Golding Cutting and Wild Cattle Cutting, 3 December 2018

### Appendix H Baseline water quality results, Golding Cutting and Wild Cattle Cutting, 3 December 2018



H-1

Baseline water quality results, Golding Cutting and Wild Cattle Cutting, 3 December 2018

| Golding Cutting-<br>Parameter | Unit | ANZECC /QWQG Trigger |                                                                             | Baseline                                        |                     |
|-------------------------------|------|----------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|                               |      |                      | А                                                                           | В                                               | С                   |
| Nutrients, TSS, Chlorophyll   |      |                      |                                                                             |                                                 |                     |
| Total Phosphorus              | µg/L | 20                   | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Ortho-Phosphorus              | µg/L | 6                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Ammonia-Nitrogen              | µg/L | 8                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Nitrite + Nitrate (as N)      | µg/L | 3                    | 8                                                                           | 5                                               | <lor< td=""></lor<> |
| Total Nitrogen                | µg/L | 200                  | 185                                                                         | 191                                             | 180                 |
| Solids (Suspended)            | mg/L | 15                   | 5                                                                           | 5                                               | 4                   |
| Chlorophyll a                 | µg/L | 2                    | 1                                                                           | 1                                               | 1                   |
| Total Organic Carbon          | mg/L | -                    | 2                                                                           | <lor< td=""><td>2</td></lor<>                   | 2                   |
| Metals and Metalloids         |      |                      |                                                                             |                                                 |                     |
| Aluminium (Total)             | µg/L | -                    | 172                                                                         | 187                                             | 295                 |
| Aluminium (Dissolved)         | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Arsenic (Total)               | µg/L | -                    | 1.7                                                                         | 1.6                                             | 1.7                 |
| Arsenic (Dissolved)           | µg/L | -                    | 1                                                                           | 1.1                                             | 1.2                 |
| Cadmium (Total)               | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Cadmium (Dissolved)           | µg/L | 0.7                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Chromium (Total)              | µg/L | -                    | <lor< td=""><td><lor< td=""><td>0.5</td></lor<></td></lor<>                 | <lor< td=""><td>0.5</td></lor<>                 | 0.5                 |
| Chromium (Dissolved)          | µg/L | 4.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Copper (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Copper (Dissolved)            | µg/L | 1.3                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Iron (Total)                  | µg/L | -                    | 202                                                                         | 242                                             | 451                 |
| Iron (Dissolved)              | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Lead (Total)                  | µg/L | -                    | 0.3                                                                         | 0.3                                             | 0.7                 |
| Lead (Dissolved)              | µg/L | 4.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Manganese (Total)             | µg/L | -                    | 5.1                                                                         | 6.6                                             | 11.3                |
| Manganese (Dissolved)         | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Mercury (Total)               | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Mercury (Dissolved)           | µg/L | 0.1                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Nickel (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td>0.6</td></lor<></td></lor<>                 | <lor< td=""><td>0.6</td></lor<>                 | 0.6                 |
| Nickel (Dissolved)            | µg/L | 7                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Silver (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Silver (Dissolved)            | µg/L | 1.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Zinc (Total)                  | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |
| Zinc (Dissolved)              | µg/L | 15                   | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |

| Table H-1 | Water | quality | results | Golding | Cutting3 |
|-----------|-------|---------|---------|---------|----------|
|-----------|-------|---------|---------|---------|----------|

<sup>&</sup>lt;sup>3</sup> Orange shading = guideline limit met or exceeded; green shading = concentration below the laboratory limit of reporting (LOR)



Baseline water quality results, Golding Cutting and Wild Cattle Cutting, 3 December 2018

| Golding Cutting-<br>Parameter | Unit | ANZECC /QWQG Trigger |                                                                             | Baseline                                        |                     |  |  |  |
|-------------------------------|------|----------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|--|--|--|
|                               |      |                      | A                                                                           | В                                               | С                   |  |  |  |
| Nutrients, TSS, Chlorophyll   | 2    |                      |                                                                             |                                                 |                     |  |  |  |
| Total Phosphorus              | µg/L | 20                   | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Ortho-Phosphorus              | µg/L | 6                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Ammonia-Nitrogen              | µg/L | 8                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Nitrite + Nitrate (as N)      | µg/L | 3                    | 3                                                                           | 4                                               | <lor< td=""></lor<> |  |  |  |
| Total Nitrogen                | µg/L | 200                  | 173                                                                         | 190                                             | 172                 |  |  |  |
| Solids (Suspended)            | mg/L | 15                   | 2                                                                           | 6                                               | 5                   |  |  |  |
| Chlorophyll a                 | µg/L | 2                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Total Organic Carbon          | mg/L | -                    | 2                                                                           | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Metals and Metalloids         |      |                      |                                                                             |                                                 |                     |  |  |  |
| Aluminium (Total)             | µg/L | -                    | 59                                                                          | 122                                             | 196                 |  |  |  |
| Aluminium (Dissolved)         | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Arsenic (Total)               | µg/L | -                    | 1.6                                                                         | 1.8                                             | 1.8                 |  |  |  |
| Arsenic (Dissolved)           | µg/L | -                    | 1.2                                                                         | 1.4                                             | 1.1                 |  |  |  |
| Cadmium (Total)               | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Cadmium (Dissolved)           | µg/L | 0.7                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Chromium (Total)              | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Chromium (Dissolved)          | µg/L | 4.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Copper (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Copper (Dissolved)            | µg/L | 1.3                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Iron (Total)                  | µg/L | -                    | 65                                                                          | 178                                             | 286                 |  |  |  |
| Iron (Dissolved)              | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Lead (Total)                  | µg/L | -                    | 0.4                                                                         | 0.7                                             | 0.9                 |  |  |  |
| Lead (Dissolved)              | µg/L | 4.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Manganese (Total)             | µg/L | -                    | 2.8                                                                         | 5.2                                             | 8.8                 |  |  |  |
| Manganese (Dissolved)         | µg/L | -                    | 0.8                                                                         | 1                                               | 1.2                 |  |  |  |
| Mercury (Total)               | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Mercury (Dissolved)           | µg/L | 0.1                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Nickel (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td>0.7</td></lor<></td></lor<>                 | <lor< td=""><td>0.7</td></lor<>                 | 0.7                 |  |  |  |
| Nickel (Dissolved)            | µg/L | 7                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Silver (Total)                | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Silver (Dissolved)            | µg/L | 1.4                  | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Zinc (Total)                  | µg/L | -                    | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |
| Zinc (Dissolved)              | μg/L | 15                   | <lor< td=""><td><lor< td=""><td><lor< td=""></lor<></td></lor<></td></lor<> | <lor< td=""><td><lor< td=""></lor<></td></lor<> | <lor< td=""></lor<> |  |  |  |

 Table H-2
 Water quality results Wild Cattle Cutting4

<sup>&</sup>lt;sup>4</sup> Orange shading = guideline limit met or exceeded; green shading = concentration below the laboratory limit of reporting (LOR)



Appendix I Laboratory Raw Data





### **CERTIFICATE OF ANALYSIS**

| Work Order              | EB1829467                     | Page                    | : 1 of 21                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|-------------------------------|-------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client                  | BMT EASTERN AUSTRALIA PTY LTD | Laboratory              | : Environmental Division B  | risbane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contact                 | : DR DARREN RICHARDSON        | Contact                 | : Customer Services EB      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address                 | : PO BOX 203 SPRING HILL      | Address                 | : 2 Byth Street Stafford QL | D Australia 4053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | BRISBANE QLD 4004             |                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Telephone               | : +61 07 3831 6744            | Telephone               | : +61-7-3243 7222           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project                 | : B23483                      | Date Samples Received   | : 03-Dec-2018 10:40         | and the second s |
| Order number            | :                             | Date Analysis Commenced | : 04-Dec-2018               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C-O-C number            | :                             | Issue Date              | : 13-Dec-2018 09:57         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler                 | : CHRIS PIETSH                |                         |                             | Hac-MRA NATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site                    | :                             |                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quote number            | : BN/293/18                   |                         |                             | Accreditation No. 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No. of samples received | : 44                          |                         |                             | Accreditation No. 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No. of samples analysed | : 44                          |                         |                             | ISO/IEC 17025 - Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         |                               |                         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category                     |
|-------------------|--------------------------|--------------------------------------------|
| Christopher Owler | Team Leader - Asbestos   | Newcastle - Inorganics, Mayfield West, NSW |
| Kim McCabe        | Senior Inorganic Chemist | Brisbane Inorganics, Stafford, QLD         |
| Kim McCabe        | Senior Inorganic Chemist | WB Water Lab Brisbane, Stafford, QLD       |
| Minh Wills        | 2IC Organic Chemist      | Brisbane Organics, Stafford, QLD           |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EG093-T (Total Metals in Saline Water by ORC-ICP-MS): High Cadmium LCS recovery deemed acceptable as all associated analyte results are less than LOR.
- EP008 (Chlorophyll a and Pheophytin a): Sample DMPA-0-A was diluted due to low sample volume provided. LOR adjusted accordingly.
- EA154: ALS does not hold NATA accreditation for Laser Particle Sizing.
- It is recognised that EG093-T (Total Metals in Saline Water by ORC-ICP-MS) is less than EG093-F (Dissolved Metals in Saline Water by ORC-ICP-MS) for some samples. However, the difference is within experimental variation of the methods.
- EG094-F (Dissolved Metals in Fresh Water): Limit of reporting raised due to insufficient volume.

# Page : 3 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)        |                    | Clie         | nt sample ID   | FB-0-A            | RB-0-A            | GAT-B-A           | GAT-B-B           | GAT-B-C           |
|---------------------------------------------|--------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                             | Cl                 | ient samplin | ng date / time | 02-Dec-2018 05:30 | 02-Dec-2018 05:35 | 02-Dec-2018 06:10 | 02-Dec-2018 06:12 | 02-Dec-2018 06:14 |
| Compound                                    | CAS Number         | LOR          | Unit           | EB1829467-001     | EB1829467-002     | EB1829467-003     | EB1829467-004     | EB1829467-005     |
|                                             |                    |              |                | Result            | Result            | Result            | Result            | Result            |
| EA025: Total Suspended Solids               | dried at 104 ± 2°C |              |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)                       |                    | 1            | mg/L           |                   |                   | 6                 | 4                 | 6                 |
| EA150: Particle Sizing                      |                    |              |                |                   |                   |                   |                   |                   |
| Ø +75μm                                     |                    | 1            | %              |                   |                   | -                 |                   |                   |
| EG035F: Dissolved Mercury by F              | IMS                |              |                |                   |                   |                   |                   |                   |
| Mercury                                     | 7439-97-6          | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| EG035T: Total Mercury by FIMS               |                    |              |                |                   |                   |                   |                   |                   |
| Mercury                                     | 7439-97-6          | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | < 0.00004         |
| -                                           |                    |              |                |                   |                   |                   |                   |                   |
| G093F: Dissolved Metals in Sal<br>Aluminium | 7429-90-5          | 5            | µg/L           |                   |                   | <5                | <5                | <5                |
| Arsenic                                     | 7429-90-3          | 0.5          | μg/L           |                   |                   | 1.5               | 1.5               | 1.5               |
| Cadmium                                     |                    | 0.3          | μg/L           |                   |                   | <0.2              | <0.2              | <0.2              |
| Chromium                                    | 7440-43-9          | 0.2          | μg/L<br>μg/L   |                   |                   | <0.2              | <0.2              | <0.2              |
|                                             | 7440-47-3          | 0.5          |                |                   |                   | <1                | <1                | <1                |
| Copper                                      | 7440-50-8          |              | µg/L           |                   |                   |                   | <5                |                   |
| Iron                                        | 7439-89-6          | 5            | µg/L           |                   |                   | <5                |                   | <5                |
| Lead                                        | 7439-92-1          | 0.2          | µg/L           |                   |                   | <0.2              | <0.2              | <0.2              |
| Manganese                                   | 7439-96-5          | 0.5          | µg/L           |                   |                   | 0.6               | 0.5               | 0.7               |
| Nickel                                      | 7440-02-0          | 0.5          | µg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| Silver                                      | 7440-22-4          | 0.1          | µg/L           |                   |                   | <0.1              | <0.1              | <0.1              |
| Zinc                                        | 7440-66-6          | 5            | µg/L           |                   |                   | <5                | <5                | <5                |
| G093T: Total Metals in Saline V             | Vater by ORC-ICPMS |              |                |                   |                   |                   |                   |                   |
| Aluminium                                   | 7429-90-5          | 5            | µg/L           |                   |                   | 40                | 61                | 95                |
| Arsenic                                     | 7440-38-2          | 0.5          | µg/L           |                   |                   | 1.8               | 1.8               | 1.7               |
| Cadmium                                     | 7440-43-9          | 0.2          | µg/L           |                   |                   | <0.2              | <0.2              | <0.2              |
| Chromium                                    | 7440-47-3          | 0.5          | µg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| Copper                                      | 7440-50-8          | 1            | µg/L           |                   |                   | <1                | <1                | <1                |
| Iron                                        | 7439-89-6          | 5            | µg/L           |                   |                   | 40                | 73                | 116               |
| Lead                                        | 7439-92-1          | 0.2          | µg/L           |                   |                   | <0.2              | <0.2              | 0.5               |
| Manganese                                   | 7439-96-5          | 0.5          | µg/L           |                   |                   | 3.0               | 3.3               | 5.4               |
| Nickel                                      | 7440-02-0          | 0.5          | µg/L           |                   |                   | <0.5              | <0.5              | <0.5              |
| Silver                                      | 7440-22-4          | 0.1          | μg/L           |                   |                   | <0.1              | <0.1              | <0.1              |
| Zinc                                        | 7440-66-6          | 5            | µg/L           |                   |                   | 6                 | <5                | <5                |
| EG094F: Dissolved Metals in Fre             |                    |              |                |                   |                   |                   |                   |                   |
| Aluminium                                   | 7429-90-5          | 5            | µg/L           | <5                | <5                |                   |                   |                   |
| Arsenic                                     | 7440-38-2          | 0.2          | μg/L           | <0.2              | <0.2              |                   |                   |                   |

# Page : 4 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)          |                        | Clier        | nt sample ID  | FB-0-A            | RB-0-A            | GAT-B-A           | GAT-B-B           | GAT-B-C           |
|-----------------------------------------------|------------------------|--------------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| · · · · · ·                                   | Cl                     | ient samplin | g date / time | 02-Dec-2018 05:30 | 02-Dec-2018 05:35 | 02-Dec-2018 06:10 | 02-Dec-2018 06:12 | 02-Dec-2018 06:14 |
| Compound                                      | CAS Number             | LOR          | Unit          | EB1829467-001     | EB1829467-002     | EB1829467-003     | EB1829467-004     | EB1829467-005     |
|                                               |                        |              | -             | Result            | Result            | Result            | Result            | Result            |
| EG094F: Dissolved Metals in Fr                | esh Water by ORC-ICPMS | S - Continue | d             |                   |                   |                   |                   |                   |
| Cadmium                                       | 7440-43-9              | 0.05         | µg/L          | <0.05             | <0.05             |                   |                   |                   |
| Chromium                                      | 7440-47-3              | 0.2          | µg/L          | <0.2              | <0.2              |                   |                   |                   |
| Copper                                        | 7440-50-8              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Iron                                          | 7439-89-6              | 2            | µg/L          | <2                | <2                |                   |                   |                   |
| Lead                                          | 7439-92-1              | 0.1          | µg/L          | <0.1              | <0.1              |                   |                   |                   |
| Manganese                                     | 7439-96-5              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Nickel                                        | 7440-02-0              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Silver                                        | 7440-22-4              | 0.1          | µg/L          | <0.1              | <0.1              |                   |                   |                   |
| Zinc                                          | 7440-66-6              | 1            | µg/L          | <1                | <5                |                   |                   |                   |
| EG094T: Total metals in Fresh v               | vater by ORC-ICPMS     |              |               |                   |                   |                   |                   |                   |
| Aluminium                                     | 7429-90-5              | 5            | µg/L          | <5                | 6                 |                   |                   |                   |
| Arsenic                                       | 7440-38-2              | 0.2          | µg/L          | <0.2              | <0.2              |                   |                   |                   |
| Cadmium                                       | 7440-43-9              | 0.05         | µg/L          | <0.05             | <0.05             |                   |                   |                   |
| Chromium                                      | 7440-47-3              | 0.2          | µg/L          | <0.2              | <0.2              |                   |                   |                   |
| Copper                                        | 7440-50-8              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Iron                                          | 7439-89-6              | 2            | µg/L          | <2                | 6                 |                   |                   |                   |
| Lead                                          | 7439-92-1              | 0.1          | µg/L          | <0.1              | <0.1              |                   |                   |                   |
| Manganese                                     | 7439-96-5              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Nickel                                        | 7440-02-0              | 0.5          | µg/L          | <0.5              | <0.5              |                   |                   |                   |
| Silver                                        | 7440-22-4              | 0.1          | µg/L          | <0.1              | <0.1              |                   |                   |                   |
| Zinc                                          | 7440-66-6              | 1            | µg/L          | <1                | 2                 |                   |                   |                   |
| EK255A: Ammonia                               |                        |              |               |                   |                   |                   |                   |                   |
| Ammonia as N                                  | 7664-41-7              | 0.005        | mg/L          | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
| EK257A: Nitrite                               |                        |              |               |                   |                   |                   |                   |                   |
| Nitrite as N                                  | 14797-65-0             | 0.002        | mg/L          | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK258A: Nitrate                               |                        |              |               |                   |                   |                   |                   |                   |
| Nitrate as N                                  | 14797-55-8             | 0.002        | mg/L          | <0.002            | <0.002            | 0.006             | 0.002             | 0.002             |
| EK259A: Nitrite and Nitrate (NO               |                        |              | -             |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                        | ~j<br>                 | 0.002        | mg/L          | <0.002            | <0.002            | 0.006             | 0.002             | 0.002             |
| EK261A: Total Kjeldahl Nitroger               |                        |              |               |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                  |                        | 0.050        | mg/L          | <0.050            | <0.050            | 0.182             | 0.171             | 0.152             |
|                                               |                        | 0.000        |               | -0.000            |                   | 0.102             | •••••             | 3.102             |
| EK262A: Total Nitrogen<br>Total Nitrogen as N |                        | 0.050        | mg/L          | <0.050            | <0.050            | 0.188             | 0.173             | 0.154             |
| EK267A: Total Phosphorus (Per                 |                        | 0.000        | ilig/L        | ~0.000            | ~0.000            | U. 100            | 0.1/3             | U.134             |

# Page : 5 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |                     | Clie        | ent sample ID  | FB-0-A            | RB-0-A            | GAT-B-A           | GAT-B-B           | GAT-B-C           |
|----------------------------------------|---------------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli                 | ent samplir | ng date / time | 02-Dec-2018 05:30 | 02-Dec-2018 05:35 | 02-Dec-2018 06:10 | 02-Dec-2018 06:12 | 02-Dec-2018 06:14 |
| Compound                               | CAS Number          | LOR         | Unit           | EB1829467-001     | EB1829467-002     | EB1829467-003     | EB1829467-004     | EB1829467-005     |
|                                        |                     |             |                | Result            | Result            | Result            | Result            | Result            |
| EK267A: Total Phosphorus (Persulfate I | Digestion) - Contin | ued         |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |                     | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |                     |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2          | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |                     |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |                     | 1           | mg/L           |                   |                   | 2                 | 2                 | 3                 |
| EP008: Chlorophyll a & Pheophytin a    |                     |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |                     | 1           | mg/m³          |                   |                   | <1                | <1                | <1                |

# Page : 6 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER)                |              | Clie          | ent sample ID  | GAT-0-A           | GAT-0-B           | GAT-0-C           | GAT-15-A          | GAT-15-B         |
|---------------------------------------------------|--------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|------------------|
|                                                   | Ci           | lient samplii | ng date / time | 02-Dec-2018 08:00 | 02-Dec-2018 08:02 | 02-Dec-2018 08:04 | 02-Dec-2018 08:15 | 02-Dec-2018 08:1 |
| Compound                                          | CAS Number   | LOR           | Unit           | EB1829467-006     | EB1829467-007     | EB1829467-008     | EB1829467-009     | EB1829467-010    |
|                                                   |              |               |                | Result            | Result            | Result            | Result            | Result           |
| EA025: Total Suspended Solids dried               | at 104 ± 2°C |               |                |                   |                   |                   |                   |                  |
| Suspended Solids (SS)                             |              | 1             | mg/L           | 18                | 8                 | 8                 | 8                 | 8                |
| EA150: Particle Sizing                            |              |               |                |                   |                   |                   |                   |                  |
| ø +75µm                                           |              | 1             | %              |                   |                   |                   |                   |                  |
| EG035F: Dissolved Mercury by FIMS                 |              |               |                |                   |                   |                   |                   |                  |
| Mercury                                           | 7439-97-6    | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| EG035T: Total Mercury by FIMS                     |              |               |                |                   |                   |                   |                   |                  |
| Mercury                                           | 7439-97-6    | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| -                                                 |              |               |                |                   |                   |                   |                   |                  |
| EG093F: Dissolved Metals in Saline V<br>Aluminium | 7429-90-5    | 5             | µg/L           | <5                | <5                | <5                | <5                | <5               |
| Arsenic                                           | 7429-90-5    | 0.5           | μg/L           | 1.7               | 1.6               | 1.5               | 1.7               | 1.6              |
| Cadmium                                           | 7440-38-2    | 0.3           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                                          | 7440-43-9    | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
|                                                   |              | 1             | μg/L           | <1                | <1                | <1                | 1                 | <1               |
| Copper<br>Iron                                    | 7440-50-8    | 5             | μg/L<br>μg/L   | <5                | <5                | <5                | <5                | <5               |
| Lead                                              | 7439-89-6    | 0.2           | μg/L<br>μg/L   | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
|                                                   | 7439-92-1    | 0.2           |                | 0.8               | <0.2              | <0.2              | <0.2              | <0.2             |
| Manganese<br>Nickel                               | 7439-96-5    | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
|                                                   | 7440-02-0    |               | µg/L           |                   | <0.5              |                   | <0.5              |                  |
| Silver                                            | 7440-22-4    | 0.1<br>5      | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                                              | 7440-66-6    | 5             | µg/L           | <0                | <0                | <0                | < <u>0</u>        | <0               |
| EG093T: Total Metals in Saline Water              |              |               |                |                   |                   |                   |                   |                  |
| Aluminium                                         | 7429-90-5    | 5             | µg/L           | 254               | 158               | 148               | 156               | 141              |
| Arsenic                                           | 7440-38-2    | 0.5           | µg/L           | 1.9               | 1.9               | 1.8               | 1.8               | 1.6              |
| Cadmium                                           | 7440-43-9    | 0.2           | µg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                                          | 7440-47-3    | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
| Copper                                            | 7440-50-8    | 1             | µg/L           | <1                | <1                | <1                | <1                | <1               |
| Iron                                              | 7439-89-6    | 5             | µg/L           | 384               | 219               | 202               | 203               | 184              |
| Lead                                              | 7439-92-1    | 0.2           | µg/L           | 0.2               | <0.2              | <0.2              | <0.2              | 0.2              |
| Manganese                                         | 7439-96-5    | 0.5           | µg/L           | 18.9              | 9.9               | 7.7               | 9.0               | 7.9              |
| Nickel                                            | 7440-02-0    | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | 0.5               | <0.5             |
| Silver                                            | 7440-22-4    | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                                              | 7440-66-6    | 5             | µg/L           | <5                | <5                | <5                | <5                | <5               |
| EK255A: Ammonia                                   |              |               |                |                   |                   |                   |                   |                  |
| Ammonia as N                                      | 7664-41-7    | 0.005         | mg/L           | <0.005            | <0.005            | < 0.005           | <0.005            | < 0.005          |

# Page : 7 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |                             | Clie  | ent sample ID | GAT-0-A           | GAT-0-B           | GAT-0-C           | GAT-15-A          | GAT-15-B          |
|----------------------------------------|-----------------------------|-------|---------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Client sampling date / time |       |               | 02-Dec-2018 08:00 | 02-Dec-2018 08:02 | 02-Dec-2018 08:04 | 02-Dec-2018 08:15 | 02-Dec-2018 08:17 |
| Compound                               | CAS Number                  | LOR   | Unit          | EB1829467-006     | EB1829467-007     | EB1829467-008     | EB1829467-009     | EB1829467-010     |
|                                        |                             |       |               | Result            | Result            | Result            | Result            | Result            |
| EK257A: Nitrite - Continued            |                             |       |               |                   |                   |                   |                   |                   |
| Nitrite as N                           | 14797-65-0                  | 0.002 | mg/L          | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK258A: Nitrate                        |                             |       |               |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8                  | 0.002 | mg/L          | 0.006             | 0.006             | 0.006             | 0.006             | 0.004             |
| EK259A: Nitrite and Nitrate (NOx)      |                             |       |               |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |                             | 0.002 | mg/L          | 0.006             | 0.006             | 0.006             | 0.006             | 0.004             |
| EK261A: Total Kjeldahl Nitrogen        |                             |       |               |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |                             | 0.050 | mg/L          | 0.140             | 0.151             | 0.161             | 0.159             | 0.141             |
| EK262A: Total Nitrogen                 |                             |       |               |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |                             | 0.050 | mg/L          | 0.146             | 0.157             | 0.167             | 0.165             | 0.145             |
| EK267A: Total Phosphorus (Persulfate D | igestion)                   |       |               |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |                             | 0.005 | mg/L          | 0.008             | <0.005            | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |                             |       |               |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2                  | 0.001 | mg/L          | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |                             |       |               |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |                             | 1     | mg/L          | 2                 | 2                 | 4                 | 1                 | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |                             |       |               |                   |                   |                   |                   |                   |
| Chlorophyll a                          |                             | 1     | mg/m³         | <1                | <1                | <1                | <1                | <1                |

# Page : 8 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                        | Clie         | ent sample ID  | GAT-15-C          | GAT-30-A          | GAT-30-B          | GAT-30-C          | GAT-30-D          |
|------------------------------------|------------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | C                      | lient sampli | ng date / time | 02-Dec-2018 08:19 | 02-Dec-2018 08:30 | 02-Dec-2018 08:32 | 02-Dec-2018 08:34 | 02-Dec-2018 08:30 |
| Compound                           | CAS Number             | LOR          | Unit           | EB1829467-011     | EB1829467-012     | EB1829467-013     | EB1829467-014     | EB1829467-015     |
|                                    |                        |              |                | Result            | Result            | Result            | Result            | Result            |
| A025: Total Suspended Solids       | dried at 104 ± 2°C     |              |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                        | 1            | mg/L           | 8                 | 6                 | 5                 | 6                 |                   |
| EG035F: Dissolved Mercury by       | FIMS                   |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6              | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                        |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6              | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Sa      |                        |              | 5              |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5              | 5            | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7429-90-5              | 0.5          | μg/L           | 1.6               | 1.7               | 1.6               | 1.7               | 1.6               |
| Cadmium                            | 7440-38-2              | 0.0          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-43-9              | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Copper                             | 7440-47-3              | 1            | μg/L           | 1                 | 1                 | <1                | <1                | <1                |
| Iron                               | 7439-89-6              | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-92-1              | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5              | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Nickel                             | 7439-50-5              | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-02-0              | 0.0          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6              | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| G093T: Total Metals in Saline \    |                        | U U          | µ9.=           |                   |                   |                   |                   | <u> </u>          |
| Aluminium                          | 7429-90-5              | 5            | µg/L           | 196               | 112               | 85                | 74                | 93                |
| Arsenic                            | 7429-90-5              | 0.5          | μg/L           | 1.8               | 1.9               | 1.6               | 1.7               | 1.8               |
| Cadmium                            | 7440-38-2              | 0.0          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-43-9              | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Copper                             | 7440-47-3              | 1            | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7440-50-8<br>7439-89-6 | 5            | μg/L           | 259               | 150               | 111               | 93                | 128               |
| Lead                               | 7439-89-8              | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-92-1              | 0.2          | μg/L           | 8.6               | 7.3               | 5.3               | 4.6               | 6.3               |
| Nickel                             | 7439-96-5              | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-02-0              | 0.0          | μg/L           | <0.0              | <0.1              | <0.1              | <0.0              | <0.1              |
| Zinc                               | 7440-22-4              | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
|                                    | / 440-00-0             |              | ₩9'⊑           |                   |                   |                   |                   | -0                |
| K255A: Ammonia<br>Ammonia as N     | 7664 44 7              | 0.005        | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
|                                    | 7664-41-7              | 0.005        | IIIY/L         | <b>\U.UU</b>      | ~0.000            | ~0.000            | NU.000            | ~0.005            |
| K257A: Nitrite                     |                        | 0.000        | ma'l           | <0.000            | <0.000            | <0.000            | <0.000            | <0.000            |
| Nitrite as N                       | 14797-65-0             | 0.002        | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |

# Page : 9 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   | Client sample ID<br>Client sampling date / time |       |       | GAT-15-C<br>02-Dec-2018 08:19 | GAT-30-A<br>02-Dec-2018 08:30 | GAT-30-B          | GAT-30-C          | GAT-30-D          |
|----------------------------------------|-------------------------------------------------|-------|-------|-------------------------------|-------------------------------|-------------------|-------------------|-------------------|
|                                        |                                                 |       |       |                               |                               | 02-Dec-2018 08:32 | 02-Dec-2018 08:34 | 02-Dec-2018 08:30 |
| Compound                               | CAS Number                                      | LOR   | Unit  | EB1829467-011                 | EB1829467-012                 | EB1829467-013     | EB1829467-014     | EB1829467-015     |
|                                        |                                                 |       |       | Result                        | Result                        | Result            | Result            | Result            |
| EK258A: Nitrate - Continued            |                                                 |       |       |                               |                               |                   |                   |                   |
| Nitrate as N                           | 14797-55-8                                      | 0.002 | mg/L  | 0.005                         | 0.007                         | 0.007             | 0.005             | 0.006             |
| EK259A: Nitrite and Nitrate (NOx)      |                                                 |       |       |                               |                               |                   |                   |                   |
| Nitrite + Nitrate as N                 |                                                 | 0.002 | mg/L  | 0.005                         | 0.007                         | 0.007             | 0.005             | 0.006             |
| EK261A: Total Kjeldahl Nitrogen        |                                                 |       |       |                               |                               |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |                                                 | 0.050 | mg/L  | 0.139                         | 0.135                         | 0.141             | 0.141             | 0.139             |
| EK262A: Total Nitrogen                 |                                                 |       |       |                               |                               |                   |                   |                   |
| Total Nitrogen as N                    |                                                 | 0.050 | mg/L  | 0.144                         | 0.142                         | 0.148             | 0.146             | 0.145             |
| EK267A: Total Phosphorus (Persulfate D | Digestion)                                      |       |       |                               |                               |                   |                   |                   |
| Total Phosphorus as P                  |                                                 | 0.005 | mg/L  | <0.005                        | <0.005                        | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |                                                 |       |       |                               |                               |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2                                      | 0.001 | mg/L  | <0.001                        | <0.001                        | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |                                                 |       |       |                               |                               |                   |                   |                   |
| Total Organic Carbon                   |                                                 | 1     | mg/L  | 3                             | 2                             | 3                 | 2                 |                   |
| EP008: Chlorophyll a & Pheophytin a    |                                                 |       |       |                               |                               |                   |                   |                   |
| Chlorophyll a                          |                                                 | 1     | mg/m³ | <1                            | <1                            | <1                | 1                 |                   |

# Page : 10 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                 | Clie         | ent sample ID  | GAT-60-A          | GAT-60-B          | GAT-60-C          | GAT-60-D          | GAT-120-A         |
|------------------------------------|-----------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | Cl              | ient sampliı | ng date / time | 02-Dec-2018 09:00 | 02-Dec-2018 09:02 | 02-Dec-2018 09:04 | 02-Dec-2018 09:00 | 02-Dec-2018 10:00 |
| compound                           | CAS Number      | LOR          | Unit           | EB1829467-016     | EB1829467-017     | EB1829467-018     | EB1829467-019     | EB1829467-020     |
|                                    |                 |              |                | Result            | Result            | Result            | Result            | Result            |
| A025: Total Suspended Solids drie  | ed at 104 ± 2°C |              |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                 | 1            | mg/L           | 5                 | 6                 | 8                 |                   | 6                 |
| G035F: Dissolved Mercury by FIMS   | S               |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6       | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                 |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6       | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Saline  |                 |              |                |                   |                   |                   |                   | 1                 |
| Aluminium                          | 7429-90-5       | 5            | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7440-38-2       | 0.5          | μg/L           | 1.6               | 1.6               | 1.5               | 1.5               | 1.6               |
| Cadmium                            | 7440-43-9       | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3       | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8       | 1            | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7439-89-6       | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-92-1       | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5       | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Nickel                             | 7440-02-0       | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4       | 0.1          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6       | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| G093T: Total Metals in Saline Wate |                 |              |                |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5       | 5            | µg/L           | 131               | 82                | 107               | 96                | 114               |
| Arsenic                            | 7440-38-2       | 0.5          | μg/L           | 1.8               | 1.7               | 1.6               | 1.8               | 1.8               |
| Cadmium                            | 7440-43-9       | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3       | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8       | 1            | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7439-89-6       | 5            | μg/L           | 168               | 116               | 145               | 126               | 184               |
| Lead                               | 7439-92-1       | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | 0.2               | <0.2              |
| Manganese                          | 7439-96-5       | 0.5          | µg/L           | 5.8               | 5.9               | 6.3               | 6.7               | 5.7               |
| Nickel                             | 7440-02-0       | 0.5          | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4       | 0.1          | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6       | 5            | µg/L           | <5                | <5                | <5                | <5                | <5                |
| K255A: Ammonia                     |                 |              |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7       | 0.005        | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | 0.007             |
| K257A: Nitrite                     |                 |              |                |                   |                   |                   |                   |                   |
| Nitrite as N                       | 14797-65-0      | 0.002        | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |

# Page : 11 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | GAT-60-A          | GAT-60-B          | GAT-60-C          | GAT-60-D          | GAT-120-A         |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ient sampli | ng date / time | 02-Dec-2018 09:00 | 02-Dec-2018 09:02 | 02-Dec-2018 09:04 | 02-Dec-2018 09:00 | 02-Dec-2018 10:00 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829467-016     | EB1829467-017     | EB1829467-018     | EB1829467-019     | EB1829467-020     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK258A: Nitrate - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.006             | 0.005             | 0.005             | 0.007             | 0.005             |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.006             | 0.005             | 0.005             | 0.007             | 0.005             |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.152             | 0.140             | 0.156             | 0.124             | 0.150             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.158             | 0.145             | 0.161             | 0.131             | 0.155             |
| EK267A: Total Phosphorus (Persulfate D | Digestion) |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 2                 | 2                 | 2                 |                   | 3                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | <1                | <1                | <1                |                   | <1                |

# Page : 12 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                        | Clie          | ent sample ID  | GAT-120-B         | GAT-120-C         | GAT-120-D         | DMPA-B-A          | DMPA-B-B          |
|------------------------------------|------------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | C                      | lient samplii | ng date / time | 02-Dec-2018 10:02 | 02-Dec-2018 10:04 | 02-Dec-2018 10:00 | 02-Dec-2018 13:00 | 02-Dec-2018 13:02 |
| Compound                           | CAS Number             | LOR           | Unit           | EB1829467-021     | EB1829467-022     | EB1829467-023     | EB1829467-024     | EB1829467-025     |
|                                    |                        |               |                | Result            | Result            | Result            | Result            | Result            |
| EA025: Total Suspended Solids dri  | ed at 104 ± 2°C        |               |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                        | 1             | mg/L           | 6                 | 6                 |                   | <1                | <1                |
| EA150: Particle Sizing             |                        |               |                |                   |                   |                   |                   |                   |
| 3 +75μm                            |                        | 1             | %              |                   |                   |                   | -                 |                   |
| G035F: Dissolved Mercury by FIN    | IS                     |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6              | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                        |               |                |                   |                   |                   | 1                 |                   |
| Mercury                            | 7439-97-6              | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Saling  |                        |               | 5              |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5              |               | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7429-90-5              |               | μg/L           | 1.6               | 1.5               | 1.2               | 1.6               | 1.6               |
| Cadmium                            | 7440-38-2              |               | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-43-9              |               | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Copper                             | 7440-47-5              |               | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7440-50-8<br>7439-89-6 |               | μg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-89-8              | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-92-1              |               | μg/L           | <0.2              | <0.2              | <0.2              | 1.7               | 1.5               |
| Nickel                             | 7439-96-5              | 0.5           | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-02-0              | 0.0           | μg/L           | <0.5              | <0.3              | <0.3              | <0.1              | <0.0              |
| Zinc                               | 7440-22-4              |               | μg/L           | <5                | <5                | <5                | <5                | <5                |
| -                                  |                        | 5             | µg/L           | -0                | -5                | -5                | 10                | -0                |
| G093T: Total Metals in Saline Wat  |                        | E             |                | 400               | 450               | 405               | 40                |                   |
| Aluminium                          | 7429-90-5              |               | µg/L           | 130               | 152               | 125               | 19                | 11                |
| Arsenic                            | 7440-38-2              |               | µg/L           | 1.5               | <b>1.7</b>        | 1.8               | 1.7               | 1.9               |
| Cadmium                            | 7440-43-9              |               | µg/L           | <0.2              |                   | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3              | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8              | 1             | µg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7439-89-6              |               | µg/L           | 171               | 190               | 176               | 23                | 16                |
| Lead                               | 7439-92-1              | 0.2           | µg/L           | 0.2               | <0.2              | 0.4               | 0.9               | <0.2              |
| Manganese                          | 7439-96-5              |               | µg/L           | 6.4               | 6.5               | 5.6               | 3.7               | 3.5               |
| Nickel                             | 7440-02-0              | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4              | 0.1           | µg/L           | <0.1              | <0.1              | 0.2               | <0.1              | <0.1              |
| Zinc                               | 7440-66-6              | 5             | µg/L           | <5                | <5                | <5                | <5                | <5                |
| K255A: Ammonia                     |                        |               |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7              | 0.005         | mg/L           | <0.005            | <0.005            | < 0.005           | < 0.005           | < 0.005           |

# Page : 13 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | GAT-120-B         | GAT-120-C         | GAT-120-D         | DMPA-B-A          | DMPA-B-B          |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ent samplii | ng date / time | 02-Dec-2018 10:02 | 02-Dec-2018 10:04 | 02-Dec-2018 10:00 | 02-Dec-2018 13:00 | 02-Dec-2018 13:02 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829467-021     | EB1829467-022     | EB1829467-023     | EB1829467-024     | EB1829467-025     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK257A: Nitrite - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrite as N                           | 14797-65-0 | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK258A: Nitrate                        |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.004             | 0.004             | 0.007             | 0.005             | <0.002            |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.004             | 0.004             | 0.007             | 0.005             | <0.002            |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.061             | 0.162             | 0.173             | 0.217             | 0.159             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.065             | 0.166             | 0.180             | 0.222             | 0.159             |
| EK267A: Total Phosphorus (Persulfate D | igestion)  |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | 0.024             |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 3                 | 2                 |                   | 2                 | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | <1                | <1                |                   | <1                | <1                |

# Page : 14 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                        | Clie          | ent sample ID  | DMPA-B-C          | DMPA-0-A          | DMPA-0-B          | DMPA-0-C          | DMPA-15-A         |
|------------------------------------|------------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | C                      | lient samplii | ng date / time | 02-Dec-2018 13:04 | 02-Dec-2018 13:55 | 02-Dec-2018 13:57 | 02-Dec-2018 13:59 | 02-Dec-2018 14:10 |
| Compound                           | CAS Number             | LOR           | Unit           | EB1829467-026     | EB1829467-027     | EB1829467-028     | EB1829467-029     | EB1829467-030     |
|                                    |                        |               |                | Result            | Result            | Result            | Result            | Result            |
| EA025: Total Suspended Solids drie | ed at 104 ± 2°C        |               |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                        | 1             | mg/L           | <1                | <1                | 13                | 6                 | 12                |
| EA150: Particle Sizing             |                        |               |                |                   |                   |                   |                   |                   |
| Ø +75μm                            |                        | 1             | %              |                   | -                 |                   |                   |                   |
| EG035F: Dissolved Mercury by FIM   | s                      |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6              | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                        |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6              | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| <u>,</u>                           |                        |               | <u>9</u> –     |                   | 0.00001           |                   | 0.00001           | 0.00001           |
| G093F: Dissolved Metals in Saline  | 7429-90-5              |               | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7429-90-5              |               | μg/L           | 1.5               | 1.5               | 1.5               | 1.6               | 1.8               |
| Cadmium                            |                        |               | μg/L<br>μg/L   | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-43-9              |               | μg/L<br>μg/L   | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Copper                             | 7440-47-3              |               | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7440-50-8              |               | μg/L<br>μg/L   | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-89-6              | 0.2           | μg/L<br>μg/L   | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
|                                    | 7439-92-1              |               | μg/L<br>μg/L   | 1.5               | 2.0               | 1.7               | 2.1               | 2.7               |
| Manganese<br>Nickel                | 7439-96-5              | 0.5           | μg/L<br>μg/L   | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-02-0<br>7440-22-4 | 0.5           | μg/L<br>μg/L   | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Zinc                               |                        |               | μg/L<br>μg/L   | <5                | <5                | <5                | <5                | <5                |
| -                                  | 7440-66-6              | 5             | µg/L           | -5                | -5                | -5                | -5                | -5                |
| G093T: Total Metals in Saline Wat  |                        | 5             |                |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5              |               | µg/L           | 17                | 121               | 59                | 294               | 569               |
| Arsenic                            | 7440-38-2              |               | μg/L           | 1.7               | 2.0               | 1.8               | 2.1               | 2.2               |
| Cadmium                            | 7440-43-9              |               | µg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3              | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | 0.6               | 0.7               |
| Copper                             | 7440-50-8              | 1             | µg/L           | <1                | <1                | <1                | <1                | 2                 |
| Iron                               | 7439-89-6              |               | µg/L           | 16                | 214               | 81                | 607               | 1120              |
| Lead                               | 7439-92-1              | 0.2           | µg/L           | <0.2              | 0.6               | <0.2              | 0.4               | 0.6               |
| Manganese                          | 7439-96-5              |               | µg/L           | 3.3               | 13.5              | 7.4               | 26.1              | 34.7              |
| Nickel                             | 7440-02-0              | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | 0.6               | 1.1               |
| Silver                             | 7440-22-4              | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6              | 5             | µg/L           | <5                | <5                | <5                | <5                | <5                |
| K255A: Ammonia                     |                        |               |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7              | 0.005         | mg/L           | <0.005            | <0.005            | < 0.005           | < 0.005           | < 0.005           |

# Page : 15 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | DMPA-B-C          | DMPA-0-A          | DMPA-0-B          | DMPA-0-C          | DMPA-15-A         |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ent samplii | ng date / time | 02-Dec-2018 13:04 | 02-Dec-2018 13:55 | 02-Dec-2018 13:57 | 02-Dec-2018 13:59 | 02-Dec-2018 14:10 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829467-026     | EB1829467-027     | EB1829467-028     | EB1829467-029     | EB1829467-030     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK257A: Nitrite - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrite as N                           | 14797-65-0 | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK258A: Nitrate                        |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.172             | 0.167             | 0.169             | 0.162             | 0.151             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.172             | 0.167             | 0.169             | 0.162             | 0.151             |
| EK267A: Total Phosphorus (Persulfate D | igestion)  |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | 0.008             |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 2                 | 2                 | 2                 | 2                 | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | <1                | <2                | <1                | <1                | <1                |

# Page : 16 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                    | Clie          | ent sample ID  | DMPA-15-B         | DMPA-15-C         | DMPA-30-A         | DMPA-30-B         | DMPA-30-C         |
|------------------------------------|--------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                    | C                  | lient samplii | ng date / time | 02-Dec-2018 14:12 | 02-Dec-2018 14:14 | 02-Dec-2018 14:25 | 02-Dec-2018 14:27 | 02-Dec-2018 14:29 |
| Compound                           | CAS Number         | LOR           | Unit           | EB1829467-031     | EB1829467-032     | EB1829467-033     | EB1829467-034     | EB1829467-035     |
|                                    |                    |               |                | Result            | Result            | Result            | Result            | Result            |
| A025: Total Suspended Solids       | dried at 104 ± 2°C |               |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                    | 1             | mg/L           | 23                | 14                | 8                 | 20                | 17                |
| G035F: Dissolved Mercury by F      | IMS                |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6          | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                    |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6          | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Sal     |                    |               |                |                   |                   |                   |                   | 1                 |
| Aluminium                          | 7429-90-5          | 5             | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7440-38-2          | 0.5           | μg/L           | 1.7               | 1.7               | 1.6               | 1.6               | 1.7               |
| Cadmium                            | 7440-43-9          | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3          | 0.5           | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8          | 1             | μg/L           | <1                | <1                | <1                | <1                | <1                |
| Iron                               | 7439-89-6          | 5             | μg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-92-1          | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5          | 0.5           | μg/L           | 2.4               | 2.1               | 2.6               | 2.5               | 2.0               |
| Nickel                             | 7440-02-0          | 0.5           | μg/L           | <0.5              | 0.5               | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4          | 0.1           | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6          | 5             | μg/L           | <5                | <5                | <5                | <5                | <5                |
| G093T: Total Metals in Saline W    |                    |               |                |                   |                   |                   |                   | 1                 |
| Aluminium                          | 7429-90-5          | 5             | µg/L           | 229               | 147               | 330               | 270               | 45                |
| Arsenic                            | 7440-38-2          | 0.5           | μg/L           | 1.8               | 1.8               | 2.0               | 2.0               | 1.8               |
| Cadmium                            | 7440-43-9          | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3          | 0.5           | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8          | 1             | μg/L           | <1                | <1                | 2                 | 1                 | <1                |
| Iron                               | 7439-89-6          | 5             | μg/L           | 402               | 285               | 645               | 549               | 79                |
| Lead                               | 7439-92-1          | 0.2           | μg/L           | 0.3               | 0.2               | 0.3               | 0.3               | <0.2              |
| Manganese                          | 7439-96-5          | 0.5           | μg/L           | 16.7              | 14.0              | 20.3              | 19.9              | 6.6               |
| Nickel                             | 7440-02-0          | 0.5           | µg/L           | <0.5              | <0.5              | 0.6               | <0.5              | <0.5              |
| Silver                             | 7440-22-4          | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6          | 5             | µg/L           | <5                | <5                | <5                | <5                | <5                |
| K255A: Ammonia                     |                    |               |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7          | 0.005         | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | < 0.005           |
| K257A: Nitrite                     |                    |               |                |                   |                   |                   |                   |                   |
| Nitrite as N                       | 14797-65-0         | 0.002         | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK258A: Nitrate                    |                    |               |                |                   |                   |                   |                   |                   |

# Page : 17 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | DMPA-15-B         | DMPA-15-C         | DMPA-30-A         | DMPA-30-B         | DMPA-30-C         |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ient sampli | ng date / time | 02-Dec-2018 14:12 | 02-Dec-2018 14:14 | 02-Dec-2018 14:25 | 02-Dec-2018 14:27 | 02-Dec-2018 14:29 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829467-031     | EB1829467-032     | EB1829467-033     | EB1829467-034     | EB1829467-035     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK258A: Nitrate - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | <0.002            |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.152             | 0.180             | 0.165             | 0.159             | 0.191             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.152             | 0.180             | 0.165             | 0.159             | 0.191             |
| EK267A: Total Phosphorus (Persulfate D | Digestion) |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 2                 | 2                 | 2                 | <1                | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | <1                | <1                | <1                | <1                | <1                |

# Page : 18 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                    | Clie         | ent sample ID  | DMPA-60-A         | DMPA-60-B         | DMPA-60-C         | DMPA-60-D         | DMPA-120-A       |
|------------------------------------|--------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|------------------|
|                                    | С                  | lient sampli | ng date / time | 02-Dec-2018 14:55 | 02-Dec-2018 14:57 | 02-Dec-2018 14:59 | 02-Dec-2018 14:55 | 02-Dec-2018 15:5 |
| Compound                           | CAS Number         | LOR          | Unit           | EB1829467-036     | EB1829467-037     | EB1829467-038     | EB1829467-039     | EB1829467-040    |
|                                    |                    |              |                | Result            | Result            | Result            | Result            | Result           |
| A025: Total Suspended Solids       | dried at 104 ± 2°C |              |                |                   |                   |                   |                   |                  |
| Suspended Solids (SS)              |                    | 1            | mg/L           | 4                 | 12                | 11                |                   | 7                |
| G035F: Dissolved Mercury by        | FIMS               |              |                |                   |                   |                   |                   |                  |
| Mercury                            | 7439-97-6          | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| G035T: Total Mercury by FIMS       |                    |              |                |                   |                   |                   |                   |                  |
| Mercury                            | 7439-97-6          | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| G093F: Dissolved Metals in Sa      |                    |              |                |                   |                   |                   |                   |                  |
| Aluminium                          | 7429-90-5          |              | µg/L           | <5                | <5                | <5                | <5                | <5               |
| Arsenic                            | 7440-38-2          | 0.5          | μg/L           | 1.5               | 1.6               | 1.7               | 1.6               | 1.6              |
| Cadmium                            | 7440-38-2          | 0.0          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                           | 7440-47-3          | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
| Copper                             | 7440-50-8          | 1            | μg/L           | <1                | <1                | <1                | <1                | <1               |
| Iron                               | 7439-89-6          | 5            | μg/L           | <5                | <5                | <5                | <5                | <5               |
| Lead                               | 7439-92-1          | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Manganese                          | 7439-96-5          | 0.5          | μg/L           | 1.9               | 2.3               | 2.1               | 1.9               | 2.0              |
| Nickel                             | 7433-30-3          | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
| Silver                             | 7440-22-4          | 0.1          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                               | 7440-66-6          |              | μg/L           | <5                | <5                | <5                | <5                | <5               |
| G093T: Total Metals in Saline      |                    |              | 13             |                   |                   |                   |                   | -                |
| Aluminium                          | 7429-90-5          | 5            | µg/L           | 41                | 131               | 199               | 42                | 62               |
| Arsenic                            | 7440-38-2          | 0.5          | μg/L           | 1.8               | 1.9               | 2.0               | 1.7               | 2.0              |
| Cadmium                            | 7440-43-9          | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                           | 7440-47-3          | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
| Copper                             | 7440-50-8          | 1            | μg/L           | <1                | <1                | 1                 | <1                | <1               |
| Iron                               | 7439-89-6          | 5            | μg/L           | 69                | 218               | 323               | 62                | 93               |
| Lead                               | 7439-92-1          | 0.2          | μg/L           | 0.3               | 0.2               | 0.2               | 0.3               | 0.3              |
| Manganese                          | 7439-96-5          | 0.5          | μg/L           | 6.2               | 13.2              | 13.4              | 6.3               | 8.5              |
| Nickel                             | 7440-02-0          | 0.5          | μg/L           | <0.5              | 0.5               | <0.5              | <0.5              | <0.5             |
| Silver                             | 7440-22-4          | 0.1          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                               | 7440-66-6          | 5            | μg/L           | <5                | <5                | <5                | <5                | <5               |
| K255A: Ammonia                     |                    |              |                |                   |                   |                   |                   |                  |
| Ammonia as N                       | 7664-41-7          | 0.005        | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | < 0.005          |
| K257A: Nitrite                     |                    |              |                |                   |                   |                   |                   |                  |
| Nitrite as N                       | 14797-65-0         | 0.002        | mg/L           | <0.002            | <0.002            | <0.002            | <0.002            | < 0.002          |
| K258A: Nitrate                     | 14/9/-05-0         | 0.002        | mg/∟           | -0.002            | -0.002            | -0.002            | -0.002            | -0.002           |

# Page : 19 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | DMPA-60-A         | DMPA-60-B         | DMPA-60-C         | DMPA-60-D         | DMPA-120-A        |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cl         | ient sampli | ng date / time | 02-Dec-2018 14:55 | 02-Dec-2018 14:57 | 02-Dec-2018 14:59 | 02-Dec-2018 14:55 | 02-Dec-2018 15:55 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829467-036     | EB1829467-037     | EB1829467-038     | EB1829467-039     | EB1829467-040     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK258A: Nitrate - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.004             | 0.002             | 0.002             | 0.004             | 0.014             |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.004             | 0.002             | 0.002             | 0.004             | 0.014             |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.177             | 0.184             | 0.196             | 0.198             | 0.197             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.181             | 0.186             | 0.198             | 0.202             | 0.211             |
| EK267A: Total Phosphorus (Persulfate [ | Digestion) |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  | ·          | 0.005       | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            | <0.005            |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 2                 | <1                | 2                 |                   | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | <1                | <1                | <1                |                   | <1                |

# Page : 20 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| A025: Total Suspended Solids dried<br>Suspended Solids (SS)<br>G035F: Dissolved Mercury by FIMS<br>Mercury<br>G035T: Total Mercury by FIMS<br>Mercury | CAS Number   | LOR     | ng date / time<br>Unit | 02-Dec-2018 15:57<br>EB1829467-041 | 02-Dec-2018 15:59 | 02-Dec-2018 15:55 | 02-Dec-2018 10:40 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------|------------------------------------|-------------------|-------------------|-------------------|--|
| EG035F: Dissolved Mercury by FIMS<br>Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                                              | at 104 ± 2°C |         | Unit                   | EB1829467-041                      |                   |                   |                   |  |
| Suspended Solids (SS)<br>EG035F: Dissolved Mercury by FIMS<br>Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                     |              |         |                        |                                    | EB1829467-042     | EB1829467-043     | EB1829467-044     |  |
| Suspended Solids (SS)<br>EG035F: Dissolved Mercury by FIMS<br>Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                     |              |         |                        | Result                             | Result            | Result            | Result            |  |
| Suspended Solids (SS)<br>EG035F: Dissolved Mercury by FIMS<br>Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                     |              |         |                        |                                    |                   |                   |                   |  |
| Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                                                                                   |              | 1       | mg/L                   | 7                                  | 4                 |                   | 19                |  |
| Mercury<br>EG035T: Total Mercury by FIMS<br>Mercury                                                                                                   |              |         |                        |                                    |                   |                   |                   |  |
| Mercury                                                                                                                                               | 7439-97-6    | 0.00004 | mg/L                   | <0.00004                           | <0.00004          | <0.00004          | <0.00004          |  |
| Mercury                                                                                                                                               |              |         |                        |                                    |                   |                   |                   |  |
| -                                                                                                                                                     | 7439-97-6    | 0.00004 | mg/L                   | <0.00004                           | <0.00004          | <0.00004          | <0.00004          |  |
| G093F: Dissolved Metals in Saline W                                                                                                                   |              |         |                        |                                    |                   |                   |                   |  |
| Aluminium                                                                                                                                             | 7429-90-5    | 5       | µg/L                   | <5                                 | <5                | <5                | <5                |  |
| Arsenic                                                                                                                                               | 7440-38-2    | 0.5     | μg/L                   | 1.3                                | 1.2               | 1.5               | 1.0               |  |
| Cadmium                                                                                                                                               | 7440-43-9    | 0.2     | μg/L                   | <0.2                               | <0.2              | <0.2              | <0.2              |  |
| Chromium                                                                                                                                              | 7440-47-3    | 0.5     | μg/L                   | <0.5                               | <0.5              | <0.5              | <0.5              |  |
| Copper                                                                                                                                                | 7440-50-8    | 1       | µg/L                   | <1                                 | <1                | <1                | <1                |  |
| Iron                                                                                                                                                  | 7439-89-6    | 5       | μg/L                   | <5                                 | <5                | <5                | <5                |  |
| Lead                                                                                                                                                  | 7439-92-1    | 0.2     | μg/L                   | <0.2                               | <0.2              | <0.2              | <0.2              |  |
| Manganese                                                                                                                                             | 7439-96-5    | 0.5     | μg/L                   | 2.0                                | 2.0               | 1.8               | <0.5              |  |
| Nickel                                                                                                                                                | 7440-02-0    | 0.5     | μg/L                   | <0.5                               | <0.5              | <0.5              | <0.5              |  |
| Silver                                                                                                                                                | 7440-22-4    | 0.1     | μg/L                   | <0.1                               | <0.1              | <0.1              | <0.1              |  |
| Zinc                                                                                                                                                  | 7440-66-6    | 5       | μg/L                   | <5                                 | <5                | <5                | <5                |  |
| G093T: Total Metals in Saline Water                                                                                                                   |              |         |                        |                                    |                   |                   |                   |  |
| Aluminium                                                                                                                                             | 7429-90-5    | 5       | µg/L                   | 148                                | 125               | 164               | 619               |  |
| Arsenic                                                                                                                                               | 7440-38-2    | 0.5     | μg/L                   | 1.7                                | 1.6               | 1.7               | 1.9               |  |
| Cadmium                                                                                                                                               | 7440-43-9    | 0.2     | μg/L                   | <0.2                               | <0.2              | <0.2              | <0.2              |  |
| Chromium                                                                                                                                              | 7440-47-3    | 0.5     | μg/L                   | <0.5                               | <0.5              | <0.5              | 2.0               |  |
| Copper                                                                                                                                                | 7440-50-8    | 1       | μg/L                   | <1                                 | <1                | <1                | <1                |  |
| Iron                                                                                                                                                  | 7439-89-6    | 5       | μg/L                   | 247                                | 173               | 248               | 1050              |  |
| Lead                                                                                                                                                  | 7439-92-1    | 0.2     | μg/L                   | 0.2                                | 0.2               | 0.4               | 0.3               |  |
| Manganese                                                                                                                                             | 7439-96-5    | 0.5     | µg/L                   | 9.3                                | 8.4               | 8.5               | 24.5              |  |
| Nickel                                                                                                                                                | 7440-02-0    | 0.5     | µg/L                   | <0.5                               | <0.5              | <0.5              | 1.6               |  |
| Silver                                                                                                                                                | 7440-22-4    | 0.1     | µg/L                   | <0.1                               | <0.1              | <0.1              | <0.1              |  |
| Zinc                                                                                                                                                  | 7440-66-6    | 5       | µg/L                   | <5                                 | <5                | <5                | 6                 |  |
| EK255A: Ammonia                                                                                                                                       |              |         |                        |                                    |                   |                   |                   |  |
| Ammonia as N                                                                                                                                          | 7664-41-7    | 0.005   | mg/L                   | <0.005                             | <0.005            | <0.005            | <0.005            |  |
| EK257A: Nitrite                                                                                                                                       |              |         |                        |                                    |                   |                   |                   |  |
| Nitrite as N                                                                                                                                          | 14797-65-0   | 0.002   | mg/L                   | <0.002                             | <0.002            | <0.002            | <0.002            |  |

# Page : 21 of 21 Work Order : EB1829467 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie       | ent sample ID  | DMPA-120-B        | DMPA-120-C        | DMPA-120-D        | GAT-Extra-A       |  |
|----------------------------------------|------------|------------|----------------|-------------------|-------------------|-------------------|-------------------|--|
|                                        | Cli        | ent sampli | ng date / time | 02-Dec-2018 15:57 | 02-Dec-2018 15:59 | 02-Dec-2018 15:55 | 02-Dec-2018 10:40 |  |
| Compound                               | CAS Number | LOR        | Unit           | EB1829467-041     | EB1829467-042     | EB1829467-043     | EB1829467-044     |  |
|                                        |            |            |                | Result            | Result            | Result            | Result            |  |
| EK258A: Nitrate - Continued            |            |            |                |                   |                   |                   |                   |  |
| Nitrate as N                           | 14797-55-8 | 0.002      | mg/L           | 0.002             | <0.002            | 0.013             | 0.014             |  |
| EK259A: Nitrite and Nitrate (NOx)      |            |            |                |                   |                   |                   |                   |  |
| Nitrite + Nitrate as N                 |            | 0.002      | mg/L           | 0.002             | <0.002            | 0.013             | 0.014             |  |
| EK261A: Total Kjeldahl Nitrogen        |            |            |                |                   |                   |                   |                   |  |
| Total Kjeldahl Nitrogen as N           |            | 0.050      | mg/L           | 0.167             | 0.107             | 0.152             | <0.050            |  |
| EK262A: Total Nitrogen                 |            |            |                |                   |                   |                   |                   |  |
| Total Nitrogen as N                    |            | 0.050      | mg/L           | 0.169             | 0.107             | 0.165             | <0.050            |  |
| EK267A: Total Phosphorus (Persulfate I | Digestion) |            |                |                   |                   |                   |                   |  |
| Total Phosphorus as P                  |            | 0.005      | mg/L           | <0.005            | <0.005            | <0.005            | <0.005            |  |
| EK271A: Reactive Phosphorus            |            |            |                |                   |                   |                   |                   |  |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001      | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            |  |
| EP005: Total Organic Carbon (TOC)      |            |            |                |                   |                   |                   |                   |  |
| Total Organic Carbon                   |            | 1          | mg/L           | 2                 | 2                 |                   | 3                 |  |
| EP008: Chlorophyll a & Pheophytin a    |            |            |                |                   |                   |                   |                   |  |
| Chlorophyll a                          |            | 1          | mg/m³          | <1                | <1                |                   | <1                |  |



### **CERTIFICATE OF ANALYSIS**

| Work Order              | EB1829356                       | Page                    | : 1 of 10                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|---------------------------------|-------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client                  | : BMT EASTERN AUSTRALIA PTY LTD | Laboratory              | : Environmental Division Br  | risbane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Contact                 | : DR DARREN RICHARDSON          | Contact                 | : Customer Services EB       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Address                 | : PO BOX 203 SPRING HILL        | Address                 | : 2 Byth Street Stafford QLI | D Australia 4053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         | BRISBANE QLD 4004               |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Telephone               | : +61 07 3831 6744              | Telephone               | : +61-7-3243 7222            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project                 | : B23483                        | Date Samples Received   | : 30-Nov-2018 09:30          | and the second s |
| Order number            | : BN/293/18                     | Date Analysis Commenced | : 30-Nov-2018                | Multi Calific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C-O-C number            | :                               | Issue Date              | : 10-Dec-2018 11:51          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler                 | : CHRIS PIETSCH                 |                         |                              | Hac-MRA NATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site                    | :                               |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quote number            | : EN/222                        |                         |                              | Accreditation No. 825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| No. of samples received | : 18                            |                         |                              | Accredited for compliance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| No. of samples analysed | : 18                            |                         |                              | ISO/IEC 17025 - Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                         |                                 |                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories  | Position                     | Accreditation Category                     |
|--------------|------------------------------|--------------------------------------------|
| Diana Mesa   | 2IC Organic Chemist          | Brisbane Organics, Stafford, QLD           |
| Dianne Blane | Laboratory Coordinator (2IC) | Newcastle - Inorganics, Mayfield West, NSW |
| Kim McCabe   | Senior Inorganic Chemist     | Brisbane Inorganics, Stafford, QLD         |
| Kim McCabe   | Senior Inorganic Chemist     | WB Water Lab Brisbane, Stafford, QLD       |
| Mark Hallas  | Senior Inorganic Chemist     | Brisbane Inorganics, Stafford, QLD         |



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- EA154: ALS does not hold NATA accreditation for Laser Particle Sizing.
- It is recognised that EG093-T (Total Metals in Saline Water by ORC-ICP-MS) is less than EG093-F (Dissolved Metals in Saline Water by ORC-ICP-MS) for some samples. However, the difference is within experimental variation of the methods.

# Page : 3 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                   | Clie          | ent sample ID  | JC - B - A        | JC - B - B        | JC - B - C        | JC - O - A        | JC - O - B        |
|------------------------------------|-------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ·                                  | C                 | lient samplir | ng date / time | 29-Nov-2018 13:55 | 29-Nov-2018 14:15 | 29-Nov-2018 14:20 | 29-Nov-2018 15:10 | 29-Nov-2018 15:12 |
| Compound                           | CAS Number        | LOR           | Unit           | EB1829356-001     | EB1829356-002     | EB1829356-003     | EB1829356-004     | EB1829356-005     |
|                                    |                   |               |                | Result            | Result            | Result            | Result            | Result            |
| A025: Total Suspended Solids d     | ried at 104 ± 2°C |               |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                   | 1             | mg/L           | 13                | 16                | 11                | 20                | 15                |
| A150: Particle Sizing              |                   |               |                |                   |                   |                   |                   |                   |
| 9 +75μm                            |                   | 1             | %              |                   | · ·               |                   | -                 |                   |
| G035F: Dissolved Mercury by Fl     | MS                |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6         | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIMS       |                   |               |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6         | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Salir   |                   |               | -              |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5         |               | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7440-38-2         |               | μg/L           | 1.2               | <0.5              | 1.2               | 1.1               | 1.2               |
| Cadmium                            | 7440-43-9         |               | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3         |               | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Copper                             | 7440-50-8         |               | μg/L           | 2                 | <1                | <1                | 1                 | <1                |
| Iron                               | 7439-89-6         |               | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-92-1         | 0.2           | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5         | 0.5           | µg/L           | 1.4               | <0.5              | 1.6               | 2.4               | 1.9               |
| Nickel                             | 7440-02-0         | 0.5           | µg/L           | 0.7               | <0.5              | <0.5              | 0.6               | <0.5              |
| Silver                             | 7440-22-4         | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6         | 5             | µg/L           | 7                 | <5                | 6                 | 7                 | <5                |
| G093T: Total Metals in Saline Wa   | ater by ORC-ICPMS |               |                |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5         | 5             | µg/L           | 299               | 479               | 397               | 730               | 386               |
| Arsenic                            | 7440-38-2         | 0.5           | µg/L           | 1.5               | 1.6               | 1.6               | 1.8               | 1.5               |
| Cadmium                            | 7440-43-9         | 0.2           | µg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3         | 0.5           | µg/L           | <0.5              | 1.0               | <0.5              | 1.3               | 1.2               |
| Copper                             | 7440-50-8         | 1             | µg/L           | <1                | 1                 | <1                | 2                 | 1                 |
| Iron                               | 7439-89-6         | 5             | µg/L           | 363               | 603               | 462               | 998               | 531               |
| Lead                               | 7439-92-1         | 0.2           | µg/L           | <0.2              | 0.4               | <0.2              | 0.5               | <0.2              |
| Manganese                          | 7439-96-5         | 0.5           | μg/L           | 11.2              | 15.2              | 12.1              | 21.3              | 17.6              |
| Nickel                             | 7440-02-0         | 0.5           | µg/L           | <0.5              | 3.0               | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4         | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6         | 5             | µg/L           | 9                 | 11                | 6                 | 13                | <5                |
| K255A: Ammonia                     |                   |               |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7         | 0.005         | mg/L           | <0.005            | 0.007             | <0.005            | 0.014             | < 0.005           |

# Page : 4 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | JC - B - A        | JC - B - B        | JC - B - C        | JC - O - A        | JC - O - B        |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ent samplir | ng date / time | 29-Nov-2018 13:55 | 29-Nov-2018 14:15 | 29-Nov-2018 14:20 | 29-Nov-2018 15:10 | 29-Nov-2018 15:12 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829356-001     | EB1829356-002     | EB1829356-003     | EB1829356-004     | EB1829356-005     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK257A: Nitrite - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrite as N                           | 14797-65-0 | 0.002       | mg/L           | 0.004             | 0.003             | 0.002             | 0.003             | 0.003             |
| EK258A: Nitrate                        |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.014             | 0.015             | 0.014             | 0.022             | 0.009             |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.018             | 0.018             | 0.016             | 0.025             | 0.012             |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.154             | 0.235             | 0.135             | 0.288             | 0.167             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.172             | 0.253             | 0.151             | 0.313             | 0.179             |
| EK267A: Total Phosphorus (Persulfate D | igestion)  |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | 0.011             | 0.013             | 0.012             | 0.022             | 0.019             |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | 0.001             | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | 3                 | 2                 | 2                 | 2                 | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | 1                 | 2                 | 2                 | 2                 | 2                 |

# Page : 5 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Gub-Matrix: WATER<br>(Matrix: WATER)  |                    | Clie          | ent sample ID  | JC - O - C        | JC - 15 - A       | JC - 15 - B       | JC - 15 - C       | JC - 30 - A      |
|---------------------------------------|--------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|------------------|
| · · · · · · · · · · · · · · · · · · · | С                  | lient sampliı | ng date / time | 29-Nov-2018 15:14 | 29-Nov-2018 15:30 | 29-Nov-2018 15:32 | 29-Nov-2018 15:34 | 29-Nov-2018 15:4 |
| Compound                              | CAS Number         | LOR           | Unit           | EB1829356-006     | EB1829356-007     | EB1829356-008     | EB1829356-009     | EB1829356-010    |
|                                       |                    |               |                | Result            | Result            | Result            | Result            | Result           |
| A025: Total Suspended Solids d        | lried at 104 ± 2°C |               |                |                   |                   |                   |                   |                  |
| Suspended Solids (SS)                 |                    | 1             | mg/L           | 57                | 38                | 25                | 63                | 14               |
| A150: Particle Sizing                 |                    |               |                |                   |                   |                   |                   |                  |
| » +75μm                               |                    | 1             | %              |                   |                   |                   |                   | -                |
| G035F: Dissolved Mercury by Fl        | IMS                |               |                |                   |                   |                   |                   |                  |
| Mercury                               | 7439-97-6          | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| G035T: Total Mercury by FIMS          |                    |               |                |                   |                   |                   |                   |                  |
| Mercury                               | 7439-97-6          | 0.00004       | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004         |
| G093F: Dissolved Metals in Sali       |                    |               |                |                   |                   |                   |                   |                  |
| Aluminium                             | 7429-90-5          |               | µg/L           | <5                | <5                | <5                | <5                | <5               |
| Arsenic                               | 7440-38-2          |               | μg/L           | 1.3               | 1.0               | 1.2               | 1.2               | 1.1              |
| Cadmium                               | 7440-43-9          |               | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                              | 7440-47-3          | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5             |
| Copper                                | 7440-50-8          | 1             | µg/L           | <1                | <1                | <1                | <1                | <1               |
| Iron                                  | 7439-89-6          | 5             | µg/L           | <5                | <5                | <5                | <5                | <5               |
| Lead                                  | 7439-92-1          | 0.2           | µg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Manganese                             | 7439-96-5          | 0.5           | µg/L           | 7.4               | 5.0               | 3.3               | 12.4              | 2.0              |
| Nickel                                | 7440-02-0          | 0.5           | µg/L           | <0.5              | <0.5              | <0.5              | <0.5              | 0.5              |
| Silver                                | 7440-22-4          | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                                  | 7440-66-6          | 5             | µg/L           | <5                | <5                | 6                 | <5                | <5               |
| G093T: Total Metals in Saline W       | ater by ORC-ICPMS  |               |                |                   |                   |                   |                   |                  |
| Aluminium                             | 7429-90-5          | 5             | µg/L           | 1490              | 1070              | 809               | 2010              | 641              |
| Arsenic                               | 7440-38-2          | 0.5           | µg/L           | 2.4               | 2.1               | 1.9               | 2.7               | 1.8              |
| Cadmium                               | 7440-43-9          | 0.2           | µg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2             |
| Chromium                              | 7440-47-3          | 0.5           | µg/L           | 2.4               | 1.6               | 1.5               | 2.7               | 0.6              |
| Copper                                | 7440-50-8          | 1             | µg/L           | 2                 | 2                 | 2                 | 3                 | 1                |
| Iron                                  | 7439-89-6          | 5             | µg/L           | 2170              | 1590              | 1260              | 2870              | 682              |
| Lead                                  | 7439-92-1          | 0.2           | µg/L           | 0.7               | 0.3               | 0.2               | 0.8               | <0.2             |
| Manganese                             | 7439-96-5          | 0.5           | µg/L           | 43.6              | 31.4              | 26.1              | 60.5              | 13.9             |
| Nickel                                | 7440-02-0          | 0.5           | µg/L           | 1.5               | 1.2               | 1.0               | 1.5               | <0.5             |
| Silver                                | 7440-22-4          | 0.1           | µg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1             |
| Zinc                                  | 7440-66-6          | 5             | µg/L           | 10                | <5                | <5                | 10                | <5               |
| EK255A: Ammonia                       |                    |               |                |                   |                   |                   |                   |                  |
| Ammonia as N                          | 7664-41-7          | 0.005         | mg/L           | 0.006             | <0.005            | <0.005            | 0.015             | <0.005           |

# Page : 6 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | JC - O - C        | JC - 15 - A       | JC - 15 - B       | JC - 15 - C       | JC - 30 - A       |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                        | Cli        | ent samplir | ng date / time | 29-Nov-2018 15:14 | 29-Nov-2018 15:30 | 29-Nov-2018 15:32 | 29-Nov-2018 15:34 | 29-Nov-2018 15:45 |
| Compound                               | CAS Number | LOR         | Unit           | EB1829356-006     | EB1829356-007     | EB1829356-008     | EB1829356-009     | EB1829356-010     |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result            |
| EK257A: Nitrite - Continued            |            |             |                |                   |                   |                   |                   |                   |
| Nitrite as N                           | 14797-65-0 | 0.002       | mg/L           | 0.003             | 0.003             | 0.003             | 0.003             | 0.003             |
| EK258A: Nitrate                        |            |             |                |                   |                   |                   |                   |                   |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.009             | 0.010             | 0.012             | 0.010             | 0.008             |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.012             | 0.013             | 0.015             | 0.013             | 0.011             |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.179             | 0.150             | 0.163             | 0.178             | 0.171             |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                   |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.191             | 0.163             | 0.178             | 0.191             | 0.182             |
| EK267A: Total Phosphorus (Persulfate D | igestion)  |             |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | 0.049             | 0.035             | 0.031             | 0.098             | 0.014             |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | <0.001            | <0.001            | <0.001            | <0.001            | <0.001            |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                   |
| Total Organic Carbon                   |            | 1           | mg/L           | <1                | 3                 | 2                 | 3                 | 2                 |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                   |
| Chlorophyll a                          |            | 1           | mg/m³          | 1                 | 1                 | 2                 | 2                 | 2                 |

# Page : 7 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                      | Clie         | ent sample ID  | JC - 30 - B       | JC - 30 - C       | JC - 60 - A       | JC - 60 - B       | JC - 60 - C       |
|------------------------------------|----------------------|--------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ·····,                             | С                    | lient sampli | ng date / time | 29-Nov-2018 15:47 | 29-Nov-2018 15:49 | 29-Nov-2018 16:15 | 29-Nov-2018 16:17 | 29-Nov-2018 16:19 |
| Compound                           | CAS Number           | LOR          | Unit           | EB1829356-011     | EB1829356-012     | EB1829356-013     | EB1829356-014     | EB1829356-015     |
|                                    |                      |              |                | Result            | Result            | Result            | Result            | Result            |
| A025: Total Suspended Solids       | s dried at 104 ± 2°C |              |                |                   |                   |                   |                   |                   |
| Suspended Solids (SS)              |                      | 1            | mg/L           | 13                | 22                | 12                | 15                | 26                |
| G035F: Dissolved Mercury by        | FIMS                 |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6            | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G035T: Total Mercury by FIM        |                      |              |                |                   |                   |                   |                   |                   |
| Mercury                            | 7439-97-6            | 0.00004      | mg/L           | <0.00004          | <0.00004          | <0.00004          | <0.00004          | <0.00004          |
| G093F: Dissolved Metals in Sa      |                      |              | 5              |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5            |              | µg/L           | <5                | <5                | <5                | <5                | <5                |
| Arsenic                            | 7429-90-5            | 0.5          | μg/L           | 1.0               | 0.9               | 1.1               | 1.1               | 1.2               |
| Cadmium                            | 7440-38-2            | 0.0          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-43-9            | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Copper                             | 7440-47-3            | 1            | μg/L           | 2                 | <1                | <1                | <1                | <1                |
| Iron                               | 7439-89-6            | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| Lead                               | 7439-92-1            | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5            | 0.5          | μg/L           | 1.8               | 3.2               | 1.5               | 1.9               | 2.5               |
| Nickel                             | 7433-30-3            | 0.5          | μg/L           | <0.5              | <0.5              | <0.5              | <0.5              | <0.5              |
| Silver                             | 7440-22-4            | 0.1          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6            |              | μg/L           | 9                 | <5                | <5                | <5                | <5                |
| G093T: Total Metals in Saline      |                      |              | 13             |                   |                   |                   |                   |                   |
| Aluminium                          | 7429-90-5            | 5            | µg/L           | 526               | 553               | 309               | 435               | 783               |
| Arsenic                            | 7440-38-2            | 0.5          | μg/L           | 1.6               | 1.8               | 1.5               | 1.7               | 2.2               |
| Cadmium                            | 7440-43-9            | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Chromium                           | 7440-47-3            | 0.5          | μg/L           | <0.5              | 0.7               | <0.5              | 0.5               | 1.2               |
| Copper                             | 7440-50-8            | 1            | μg/L           | 1                 | 1                 | 1                 | 1                 | 2                 |
| Iron                               | 7439-89-6            | 5            | μg/L           | 635               | 785               | 427               | 593               | 1160              |
| Lead                               | 7439-92-1            | 0.2          | μg/L           | <0.2              | <0.2              | <0.2              | <0.2              | <0.2              |
| Manganese                          | 7439-96-5            | 0.5          | μg/L           | 13.2              | 19.5              | 12.4              | 15.7              | 27.4              |
| Nickel                             | 7440-02-0            | 0.5          | μg/L           | 0.7               | 0.7               | <0.5              | <0.5              | 0.7               |
| Silver                             | 7440-22-4            | 0.1          | μg/L           | <0.1              | <0.1              | <0.1              | <0.1              | <0.1              |
| Zinc                               | 7440-66-6            | 5            | μg/L           | <5                | <5                | <5                | <5                | <5                |
| K255A: Ammonia                     |                      | 1            |                |                   |                   |                   |                   |                   |
| Ammonia as N                       | 7664-41-7            | 0.005        | mg/L           | 0.025             | <0.005            | <0.005            | <0.005            | < 0.005           |
| K257A: Nitrite                     |                      |              |                | *                 |                   |                   |                   |                   |
| Nitrite as N                       | 14797-65-0           | 0.002        | mg/L           | 0.003             | 0.002             | 0.003             | 0.003             | 0.002             |
| EK258A: Nitrate                    | 14797-00-0           | 0.002        | mg/L           | 0.005             | 0.002             | 0.005             | 0.000             | 0.002             |

# Page : 8 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   |            | Clie        | ent sample ID  | JC - 30 - B       | JC - 30 - C       | JC - 60 - A       | JC - 60 - B       | JC - 60 - C<br>29-Nov-2018 16:19 |
|----------------------------------------|------------|-------------|----------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|
|                                        | Cl         | ient sampli | ng date / time | 29-Nov-2018 15:47 | 29-Nov-2018 15:49 | 29-Nov-2018 16:15 | 29-Nov-2018 16:17 |                                  |
| Compound                               | CAS Number | LOR         | Unit           | EB1829356-011     | EB1829356-012     | EB1829356-013     | EB1829356-014     | EB1829356-015                    |
|                                        |            |             |                | Result            | Result            | Result            | Result            | Result                           |
| EK258A: Nitrate - Continued            |            |             |                |                   |                   |                   |                   |                                  |
| Nitrate as N                           | 14797-55-8 | 0.002       | mg/L           | 0.019             | 0.008             | 0.011             | 0.012             | 0.009                            |
| EK259A: Nitrite and Nitrate (NOx)      |            |             |                |                   |                   |                   |                   |                                  |
| Nitrite + Nitrate as N                 |            | 0.002       | mg/L           | 0.022             | 0.010             | 0.014             | 0.015             | 0.011                            |
| EK261A: Total Kjeldahl Nitrogen        |            |             |                |                   |                   |                   |                   |                                  |
| Total Kjeldahl Nitrogen as N           |            | 0.050       | mg/L           | 0.255             | 0.254             | 0.159             | 0.134             | 0.143                            |
| EK262A: Total Nitrogen                 |            |             |                |                   |                   |                   |                   |                                  |
| Total Nitrogen as N                    |            | 0.050       | mg/L           | 0.277             | 0.264             | 0.173             | 0.149             | 0.154                            |
| EK267A: Total Phosphorus (Persulfate D | Digestion) |             |                |                   |                   |                   |                   |                                  |
| Total Phosphorus as P                  |            | 0.005       | mg/L           | 0.017             | 0.018             | 0.010             | 0.014             | 0.021                            |
| EK271A: Reactive Phosphorus            |            |             |                |                   |                   |                   |                   |                                  |
| Reactive Phosphorus as P               | 14265-44-2 | 0.001       | mg/L           | 0.002             | <0.001            | 0.001             | <0.001            | <0.001                           |
| EP005: Total Organic Carbon (TOC)      |            |             |                |                   |                   |                   |                   |                                  |
| Total Organic Carbon                   |            | 1           | mg/L           | 3                 | 3                 | 2                 | 3                 | 3                                |
| EP008: Chlorophyll a & Pheophytin a    |            |             |                |                   |                   |                   |                   |                                  |
| Chlorophyll a                          |            | 1           | mg/m³          | 1                 | 2                 | 1                 | 2                 | 1                                |

# Page : 9 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| ub-Matrix: WATER<br>Matrix: WATER) |                | Clie         | ent sample ID                         | JC - 120 - A      | JC - 120 - B      | JC - 120 - C      | <br> |
|------------------------------------|----------------|--------------|---------------------------------------|-------------------|-------------------|-------------------|------|
|                                    | Cl             | ient samplir | ng date / time                        | 29-Nov-2018 17:05 | 29-Nov-2018 17:07 | 29-Nov-2018 17:09 | <br> |
| Compound                           | CAS Number     | LOR          | Unit                                  | EB1829356-016     | EB1829356-017     | EB1829356-018     | <br> |
|                                    |                |              |                                       | Result            | Result            | Result            | <br> |
| A025: Total Suspended Solids drie  | d at 104 ± 2°C |              |                                       |                   |                   |                   |      |
| Suspended Solids (SS)              |                | 1            | mg/L                                  | 25                | 24                | 20                | <br> |
| G035F: Dissolved Mercury by FIMS   | 3              |              |                                       |                   |                   |                   |      |
| Mercury                            | 7439-97-6      | 0.00004      | mg/L                                  | <0.00004          | <0.00004          | <0.00004          | <br> |
| G035T: Total Mercury by FIMS       |                |              |                                       |                   |                   |                   |      |
| Mercury                            | 7439-97-6      | 0.00004      | mg/L                                  | <0.00004          | <0.00004          | <0.00004          | <br> |
| G093F: Dissolved Metals in Saline  |                |              |                                       |                   |                   |                   |      |
| Aluminium                          | 7429-90-5      | 5            | µg/L                                  | <5                | <5                | <5                | <br> |
| Arsenic                            | 7440-38-2      | 0.5          | μg/L                                  | 1.1               | 1.0               | 1.0               | <br> |
| Cadmium                            | 7440-43-9      | 0.2          | μg/L                                  | <0.2              | <0.2              | <0.2              | <br> |
| Chromium                           | 7440-47-3      | 0.5          | μg/L                                  | <0.5              | <0.5              | <0.5              | <br> |
| Copper                             | 7440-50-8      | 1            | μg/L                                  | <1                | <1                | <1                | <br> |
| Iron                               | 7439-89-6      | 5            | μg/L                                  | <5                | <5                | <5                | <br> |
| Lead                               | 7439-92-1      | 0.2          | μg/L                                  | <0.2              | <0.2              | <0.2              | <br> |
| Manganese                          | 7439-96-5      | 0.5          | μg/L                                  | 3.1               | 2.8               | 2.1               | <br> |
| Nickel                             | 7440-02-0      | 0.5          | µg/L                                  | <0.5              | <0.5              | <0.5              | <br> |
| Silver                             | 7440-22-4      | 0.1          | µg/L                                  | <0.1              | <0.1              | <0.1              | <br> |
| Zinc                               | 7440-66-6      | 5            | µg/L                                  | <5                | <5                | <5                | <br> |
| G093T: Total Metals in Saline Wate | r by ORC-ICPMS |              |                                       |                   |                   |                   |      |
| Aluminium                          | 7429-90-5      | 5            | µg/L                                  | 762               | 815               | 534               | <br> |
| Arsenic                            | 7440-38-2      | 0.5          | μg/L                                  | 2.0               | 1.8               | 1.6               | <br> |
| Cadmium                            | 7440-43-9      | 0.2          | µg/L                                  | <0.2              | <0.2              | <0.2              | <br> |
| Chromium                           | 7440-47-3      | 0.5          | μg/L                                  | 0.9               | 1.2               | 0.8               | <br> |
| Copper                             | 7440-50-8      | 1            | µg/L                                  | 1                 | 2                 | 1                 | <br> |
| Iron                               | 7439-89-6      | 5            | µg/L                                  | 1120              | 1110              | 770               | <br> |
| Lead                               | 7439-92-1      | 0.2          | µg/L                                  | <0.2              | <0.2              | <0.2              | <br> |
| Manganese                          | 7439-96-5      | 0.5          | µg/L                                  | 26.2              | 24.8              | 19.3              | <br> |
| Nickel                             | 7440-02-0      | 0.5          | µg/L                                  | 0.7               | 0.6               | 0.6               | <br> |
| Silver                             | 7440-22-4      | 0.1          | µg/L                                  | <0.1              | <0.1              | <0.1              | <br> |
| Zinc                               | 7440-66-6      | 5            | μg/L                                  | <5                | <5                | <5                | <br> |
| K255A: Ammonia                     |                |              |                                       |                   |                   |                   |      |
| Ammonia as N                       | 7664-41-7      | 0.005        | mg/L                                  | <0.005            | <0.005            | <0.005            | <br> |
| K257A: Nitrite                     |                |              |                                       |                   |                   |                   |      |
| Nitrite as N                       | 14797-65-0     | 0.002        | mg/L                                  | 0.003             | 0.002             | 0.002             | <br> |
| K258A: Nitrate                     |                |              | J J J J J J J J J J J J J J J J J J J |                   |                   |                   | -    |

# Page : 10 of 10 Work Order : EB1829356 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Sub-Matrix: WATER<br>(Matrix: WATER)   | Client sample ID |             |                | JC - 120 - A      | JC - 120 - B      | JC - 120 - C      | <br> |
|----------------------------------------|------------------|-------------|----------------|-------------------|-------------------|-------------------|------|
|                                        | Cl               | ient sampli | ng date / time | 29-Nov-2018 17:05 | 29-Nov-2018 17:07 | 29-Nov-2018 17:09 | <br> |
| Compound                               | CAS Number       | LOR         | Unit           | EB1829356-016     | EB1829356-017     | EB1829356-018     | <br> |
|                                        |                  |             |                | Result            | Result            | Result            | <br> |
| EK258A: Nitrate - Continued            |                  |             |                |                   |                   |                   |      |
| Nitrate as N                           | 14797-55-8       | 0.002       | mg/L           | 0.008             | 0.009             | 0.009             | <br> |
| EK259A: Nitrite and Nitrate (NOx)      |                  |             |                |                   |                   |                   |      |
| Nitrite + Nitrate as N                 |                  | 0.002       | mg/L           | 0.011             | 0.011             | 0.011             | <br> |
| EK261A: Total Kjeldahl Nitrogen        |                  |             |                |                   |                   |                   |      |
| Total Kjeldahl Nitrogen as N           |                  | 0.050       | mg/L           | 0.111             | 0.125             | 0.160             | <br> |
| EK262A: Total Nitrogen                 |                  |             |                |                   |                   |                   |      |
| Total Nitrogen as N                    |                  | 0.050       | mg/L           | 0.122             | 0.136             | 0.171             | <br> |
| EK267A: Total Phosphorus (Persulfate D | igestion)        |             |                |                   |                   |                   |      |
| Total Phosphorus as P                  |                  | 0.005       | mg/L           | 0.021             | 0.024             | 0.022             | <br> |
| EK271A: Reactive Phosphorus            |                  |             |                |                   |                   |                   |      |
| Reactive Phosphorus as P               | 14265-44-2       | 0.001       | mg/L           | 0.001             | <0.001            | <0.001            | <br> |
| EP005: Total Organic Carbon (TOC)      |                  |             |                |                   |                   |                   |      |
| Total Organic Carbon                   |                  | 1           | mg/L           | 2                 | 2                 | 3                 | <br> |
| EP008: Chlorophyll a & Pheophytin a    |                  |             |                |                   |                   |                   |      |
| Chlorophyll a                          |                  | 1           | mg/m³          | 1                 | 1                 | 1                 | <br> |



# **QUALITY CONTROL REPORT**

| Work Order              | : EB1829474                                 | Page                    | : 1 of 8                   |                                |
|-------------------------|---------------------------------------------|-------------------------|----------------------------|--------------------------------|
| Client                  | : BMT EASTERN AUSTRALIA PTY LTD             | Laboratory              | : Environmental Division   | Brisbane                       |
| Contact                 | : DR DARREN RICHARDSON                      | Contact                 | : Customer Services EB     |                                |
| Address                 | PO BOX 203 SPRING HILL<br>BRISBANE QLD 4004 | Address                 | : 2 Byth Street Stafford Q | LD Australia 4053              |
| Telephone               | : +61 07 3831 6744                          | Telephone               | : +61-7-3243 7222          |                                |
| Project                 | : B23483                                    | Date Samples Received   | : 04-Dec-2018              | annun.                         |
| Order number            | :                                           | Date Analysis Commenced | : 05-Dec-2018              |                                |
| C-O-C number            | :                                           | Issue Date              | : 13-Dec-2018              | Hac-MRA NATA                   |
| Sampler                 | :                                           |                         |                            | Hac-MRA NAIA                   |
| Site                    | :                                           |                         |                            |                                |
| Quote number            | : BN/293/18                                 |                         |                            | Accreditation No. 825          |
| No. of samples received | : 12                                        |                         |                            | Accredited for compliance with |
| No. of samples analysed | : 12                                        |                         |                            | ISO/IEC 17025 - Testing        |

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

## Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

| Signatories       | Position                 | Accreditation Category                     |
|-------------------|--------------------------|--------------------------------------------|
| Christopher Owler | Team Leader - Asbestos   | Newcastle - Inorganics, Mayfield West, NSW |
| Kim McCabe        | Senior Inorganic Chemist | Brisbane Inorganics, Stafford, QLD         |
| Kim McCabe        | Senior Inorganic Chemist | WB Water Lab Brisbane, Stafford, QLD       |
| Minh Wills        | 2IC Organic Chemist      | Brisbane Organics, Stafford, QLD           |
|                   |                          |                                            |



## **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

## Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: WATER    |                         |                                |            | Laboratory Duplicate (DUP) Report |      |                 |                  |         |                     |  |
|----------------------|-------------------------|--------------------------------|------------|-----------------------------------|------|-----------------|------------------|---------|---------------------|--|
| Laboratory sample ID | Client sample ID        | Method: Compound               | CAS Number | LOR                               | Unit | Original Result | Duplicate Result | RPD (%) | Recovery Limits (%) |  |
| EA025: Total Suspe   | nded Solids dried at 10 | 4 ± 2°C (QC Lot: 2077952)      |            |                                   |      |                 |                  |         |                     |  |
| EB1829467-026        | Anonymous               | EA025: Suspended Solids (SS)   |            | 1                                 | mg/L | <1              | <1               | 0.00    | No Limit            |  |
| EB1829467-036        | Anonymous               | EA025: Suspended Solids (SS)   |            | 1                                 | mg/L | 4               | 4                | 0.00    | No Limit            |  |
| EA025: Total Suspe   | nded Solids dried at 10 | 4 ± 2°C (QC Lot: 2077953)      |            |                                   |      |                 |                  |         |                     |  |
| EB1829474-007        | WCC-B-A                 | EA025: Suspended Solids (SS)   |            | 1                                 | mg/L | 2               | 3                | 0.00    | No Limit            |  |
| EG035F: Dissolved    | Mercury by FIMS (QC L   | _ot: 2075256)                  |            |                                   |      |                 |                  |         |                     |  |
| EB1829467-041        | Anonymous               | EG035F-LL: Mercury             | 7439-97-6  | 0.00004                           | mg/L | <0.00004        | <0.00004         | 0.00    | No Limit            |  |
| EB1829474-009        | WCC-B-C                 | EG035F-LL: Mercury             | 7439-97-6  | 0.00004                           | mg/L | <0.00004        | <0.00004         | 0.00    | No Limit            |  |
| EG035T: Total Merc   | cury by FIMS (QC Lot: 2 | 2075250)                       |            |                                   |      |                 |                  |         |                     |  |
| EB1829467-041        | Anonymous               | EG035T-LL: Mercury             | 7439-97-6  | 0.00004                           | mg/L | <0.00004        | <0.00004         | 0.00    | No Limit            |  |
| EB1829474-009        | WCC-B-C                 | EG035T-LL: Mercury             | 7439-97-6  | 0.00004                           | mg/L | <0.00004        | <0.00004         | 0.00    | No Limit            |  |
| EG093F: Dissolved    | Metals in Saline Water  | by ORC-ICPMS (QC Lot: 2075242) |            |                                   |      |                 |                  |         |                     |  |
| EB1829467-041        | Anonymous               | EG093A-F: Silver               | 7440-22-4  | 0.1                               | µg/L | <0.1            | <0.1             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Cadmium              | 7440-43-9  | 0.2                               | µg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Lead                 | 7439-92-1  | 0.2                               | µg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Arsenic              | 7440-38-2  | 0.5                               | µg/L | 1.3             | 1.4              | 8.23    | No Limit            |  |
|                      |                         | EG093A-F: Chromium             | 7440-47-3  | 0.5                               | µg/L | <0.5            | <0.5             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Manganese            | 7439-96-5  | 0.5                               | µg/L | 2.0             | 2.1              | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Nickel               | 7440-02-0  | 0.5                               | µg/L | <0.5            | <0.5             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Copper               | 7440-50-8  | 1                                 | µg/L | <1              | <1               | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Aluminium            | 7429-90-5  | 5                                 | µg/L | <5              | <5               | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Zinc                 | 7440-66-6  | 5                                 | µg/L | <5              | <5               | 0.00    | No Limit            |  |
| EB1829474-008        | WCC-B-B                 | EG093A-F: Silver               | 7440-22-4  | 0.1                               | µg/L | <0.1            | <0.1             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Cadmium              | 7440-43-9  | 0.2                               | µg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |
|                      |                         | EG093A-F: Lead                 | 7439-92-1  | 0.2                               | µg/L | <0.2            | <0.2             | 0.00    | No Limit            |  |



| Sub-Matrix: WATER    | R                               |                                            |            |      |       | Laboratory I    | Duplicate (DUP) Report | t       |                     |
|----------------------|---------------------------------|--------------------------------------------|------------|------|-------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID                | Method: Compound                           | CAS Number | LOR  | Unit  | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG093F: Dissolved    | Metals in Saline Water          | by ORC-ICPMS (QC Lot: 2075242) - continued |            |      |       |                 |                        |         |                     |
| EB1829474-008        | WCC-B-B                         | EG093A-F: Arsenic                          | 7440-38-2  | 0.5  | µg/L  | 1.4             | 1.2                    | 18.4    | No Limit            |
|                      |                                 | EG093A-F: Chromium                         | 7440-47-3  | 0.5  | µg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-F: Manganese                        | 7439-96-5  | 0.5  | µg/L  | 1.0             | 1.0                    | 0.00    | No Limit            |
|                      |                                 | EG093A-F: Nickel                           | 7440-02-0  | 0.5  | µg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-F: Copper                           | 7440-50-8  | 1    | µg/L  | <1              | <1                     | 0.00    | No Limit            |
|                      |                                 | EG093A-F: Aluminium                        | 7429-90-5  | 5    | µg/L  | <5              | <5                     | 0.00    | No Limit            |
|                      |                                 | EG093A-F: Zinc                             | 7440-66-6  | 5    | µg/L  | <5              | <5                     | 0.00    | No Limit            |
| EG093F: Dissolved    | Metals in Saline Water          | by ORC-ICPMS (QC Lot: 2075243)             |            |      |       |                 |                        |         |                     |
| EB1829467-041        | Anonymous                       | EG093B-F: Iron                             | 7439-89-6  | 5    | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| EB1829474-008        | WCC-B-B                         | EG093B-F: Iron                             | 7439-89-6  | 5    | µg/L  | <5              | <5                     | 0.00    | No Limit            |
| EG093T: Total Meta   |                                 | RC-ICPMS (QC Lot: 2075223)                 |            |      |       |                 |                        |         |                     |
| EB1829467-041        | Anonymous                       | EG093A-T: Silver                           | 7440-22-4  | 0.1  | µg/L  | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Cadmium                          | 7440-43-9  | 0.2  | µg/L  | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Lead                             | 7439-92-1  | 0.2  | μg/L  | 0.2             | 0.2                    | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Arsenic                          | 7440-38-2  | 0.5  | μg/L  | 1.7             | 1.8                    | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Chromium                         | 7440-47-3  | 0.5  | μg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Manganese                        | 7439-96-5  | 0.5  | μg/L  | 9.3             | 9.9                    | 6.66    | 0% - 50%            |
|                      |                                 | EG093A-T: Nickel                           | 7440-02-0  | 0.5  | μg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Copper                           | 7440-50-8  | 1    | μg/L  | <1              | <1                     | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Aluminium                        | 7429-90-5  | 5    | μg/L  | 148             | 172                    | 15.0    | 0% - 20%            |
|                      |                                 | EG093A-T: Zinc                             | 7440-66-6  | 5    | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| EB1829474-008        | WCC-B-B                         | EG093A-T: Silver                           | 7440-22-4  | 0.1  | μg/L  | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Cadmium                          | 7440-43-9  | 0.2  | μg/L  | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Lead                             | 7439-92-1  | 0.2  | µg/L  | 0.7             | 0.7                    | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Arsenic                          | 7440-38-2  | 0.5  | µg/L  | 1.8             | 1.7                    | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Chromium                         | 7440-47-3  | 0.5  | µg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Manganese                        | 7439-96-5  | 0.5  | µg/L  | 5.2             | 5.3                    | 1.90    | 0% - 50%            |
|                      |                                 | EG093A-T: Nickel                           | 7440-02-0  | 0.5  | µg/L  | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Copper                           | 7440-50-8  | 1    | µg/L  | <1              | <1                     | 0.00    | No Limit            |
|                      |                                 | EG093A-T: Aluminium                        | 7429-90-5  | 5    | µg/L  | 122             | 128                    | 4.67    | 0% - 20%            |
|                      |                                 | EG093A-T: Zinc                             | 7440-66-6  | 5    | μg/L  | <5              | <5                     | 0.00    | No Limit            |
| EG093T: Total Meta   | ls in Saline Water by O         | RC-ICPMS (QC Lot: 2075224)                 |            |      |       |                 |                        |         |                     |
| EB1829467-041        | Anonymous                       | EG093B-T: Iron                             | 7439-89-6  | 5    | µg/L  | 247             | 244                    | 1.22    | 0% - 20%            |
| EB1829474-008        | WCC-B-B                         | EG093B-T: Iron                             | 7439-89-6  | 5    | µg/L  | 178             | 180                    | 0.943   | 0% - 20%            |
| EG094F: Dissolved    | Metals in Fr <u>esh Water I</u> | by ORC-ICPMS (QC Lot: 2087452)             |            |      |       |                 |                        |         |                     |
| EB1829467-001        | Anonymous                       | EG094B-F: Iron                             | 7439-89-6  | 2    | μg/L  | <2              | <2                     | 0.00    | No Limit            |
| EG094E: Dissolved    | -                               | by ORC-ICPMS (QC Lot: 2087453)             |            |      | 10    |                 | 1                      |         | 1                   |
| EB1829467-001        | Anonymous                       | EG094A-F: Cadmium                          | 7440-43-9  | 0.05 | µg/L  | <0.05           | < 0.05                 | 0.00    | No Limit            |
|                      | , alonymous                     | EG094A-F: Lead                             | 7439-92-1  | 0.05 | μg/L  | <0.05           | <0.00                  | 0.00    | No Limit            |
| 1                    |                                 | EGU94A-F. Leau                             | 7700-92-1  | 0.1  | P9/ L | \$0.1           | \$0.1                  | 0.00    |                     |



| Sub-Matrix: WATER    |                               |                                              |            |       |      | Laboratory I    | Duplicate (DUP) Report | 1       |                     |
|----------------------|-------------------------------|----------------------------------------------|------------|-------|------|-----------------|------------------------|---------|---------------------|
| Laboratory sample ID | Client sample ID              | Method: Compound                             | CAS Number | LOR   | Unit | Original Result | Duplicate Result       | RPD (%) | Recovery Limits (%) |
| EG094F: Dissolved    | Metals in Fresh Wate          | r by ORC-ICPMS (QC Lot: 2087453) - continued |            |       |      |                 |                        |         |                     |
| EB1829467-001        | Anonymous                     | EG094A-F: Silver                             | 7440-22-4  | 0.1   | µg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Arsenic                            | 7440-38-2  | 0.2   | µg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Chromium                           | 7440-47-3  | 0.2   | µg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Copper                             | 7440-50-8  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Manganese                          | 7439-96-5  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Nickel                             | 7440-02-0  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-F: Zinc                               | 7440-66-6  | 1     | µg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                               | EG094A-F: Aluminium                          | 7429-90-5  | 5     | µg/L | <5              | <5                     | 0.00    | No Limit            |
| EG094T: Total meta   | ls in Fresh water by C        | DRC-ICPMS (QC Lot: 2087455)                  |            |       |      |                 |                        |         |                     |
| EB1829467-001        | Anonymous                     | EG094B-T: Iron                               | 7439-89-6  | 2     | µg/L | <2              | <2                     | 0.00    | No Limit            |
| EG094T: Total meta   | ls in Fresh water by <b>C</b> | DRC-ICPMS (QC Lot: 2087456)                  |            |       |      |                 |                        |         |                     |
| EB1829467-001        | Anonymous                     | EG094A-T: Cadmium                            | 7440-43-9  | 0.05  | µg/L | <0.05           | <0.05                  | 0.00    | No Limit            |
|                      |                               | EG094A-T: Lead                               | 7439-92-1  | 0.1   | µg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Silver                             | 7440-22-4  | 0.1   | µg/L | <0.1            | <0.1                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Arsenic                            | 7440-38-2  | 0.2   | µg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Chromium                           | 7440-47-3  | 0.2   | µg/L | <0.2            | <0.2                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Copper                             | 7440-50-8  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Manganese                          | 7439-96-5  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Nickel                             | 7440-02-0  | 0.5   | µg/L | <0.5            | <0.5                   | 0.00    | No Limit            |
|                      |                               | EG094A-T: Zinc                               | 7440-66-6  | 1     | µg/L | <1              | <1                     | 0.00    | No Limit            |
|                      |                               | EG094A-T: Aluminium                          | 7429-90-5  | 5     | µg/L | <5              | <5                     | 0.00    | No Limit            |
| EK255A: Ammonia      | (QC Lot: 2078487)             |                                              |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK255A-SW: Ammonia as N                      | 7664-41-7  | 0.005 | mg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EK257A: Nitrite (QC  | : Lot: 2078485)               |                                              |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK257A-SW: Nitrite as N                      | 14797-65-0 | 0.002 | mg/L | <0.002          | <0.002                 | 0.00    | No Limit            |
| EK259A: Nitrite and  | Nitrate (NOx) (QC Lo          | ot: 2078484)                                 |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK259A-SW: Nitrite + Nitrate as N            |            | 0.002 | mg/L | 0.008           | 0.006                  | 22.0    | No Limit            |
| EK262A: Total Nitro  | gen (QC Lot: 207849           | 1)                                           |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK262PA-SW: Total Nitrogen as N              |            | 0.025 | mg/L | 0.185           | 0.184                  | 0.542   | No Limit            |
| EK267A: Total Phos   | phorus (Persulfate D          | igestion) (QC Lot: 2078490)                  |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK267PA-SW: Total Phosphorus as P            |            | 0.005 | mg/L | <0.005          | <0.005                 | 0.00    | No Limit            |
| EK271A: Reactive P   | hosphorus (QC Lot:            | 2078486)                                     |            |       |      |                 |                        |         |                     |
| EB1829474-003        | GC-B-A                        | EK271A-SW: Reactive Phosphorus as P          | 14265-44-2 | 0.001 | mg/L | <0.001          | <0.001                 | 0.00    | No Limit            |
| EP005: Total Organi  | c Carbon (TOC) (QC            | Lot: 2079231)                                |            |       |      |                 |                        |         |                     |
| EB1828570-003        | Anonymous                     | EP005: Total Organic Carbon                  |            | 1     | mg/L | 6               | 5                      | 20.3    | No Limit            |
| EB1829630-001        | Anonymous                     | EP005: Total Organic Carbon                  |            | 1     | mg/L | 18              | 15                     | 17.7    | 0% - 50%            |



# Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: WATER                            |                           |         |      | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------|---------------------------|---------|------|-------------------|---------------|------------------------------|-----------|------------|
|                                              |                           |         |      | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                             | CAS Number                | LOR     | Unit | Result            | Concentration | LCS                          | Low       | High       |
| EA025: Total Suspended Solids dried at 104 : | ± 2°C (QCLot: 2077952)    |         |      |                   |               |                              |           |            |
| EA025: Suspended Solids (SS)                 |                           | 1       | mg/L | <1                | 150 mg/L      | 99.2                         | 84        | 120        |
|                                              |                           |         |      | <1                | 1000 mg/L     | 99.9                         | 84        | 120        |
| EA025: Total Suspended Solids dried at 104 : | ± 2°C (QCLot: 2077953)    |         |      |                   |               |                              |           |            |
| EA025: Suspended Solids (SS)                 |                           | 1       | mg/L | <1                | 150 mg/L      | 107                          | 84        | 120        |
|                                              |                           |         |      | <1                | 1000 mg/L     | 96.6                         | 84        | 120        |
| EG035F: Dissolved Mercury by FIMS (QCLot     | : 2075256)                |         |      |                   |               |                              |           |            |
| EG035F-LL: Mercury                           | 7439-97-6                 | 0.00004 | mg/L | <0.00004          | 0.002 mg/L    | 99.0                         | 85        | 118        |
| EG035T: Total Mercury by FIMS (QCLot: 207    | (5250)                    |         |      |                   |               |                              |           |            |
| EG035T-LL: Mercury                           | 7439-97-6                 | 0.00004 | mg/L | <0.00004          | 0.002 mg/L    | 99.5                         | 84        | 114        |
| EG093F: Dissolved Metals in Saline Water by  | ORC-ICPMS (OCI of: 207524 | (2)     |      |                   |               |                              |           |            |
| EG093A-F: Aluminium                          | 7429-90-5                 | 5       | μg/L | <5                | 50 µg/L       | 87.2                         | 85        | 118        |
| EG093A-F: Arsenic                            | 7440-38-2                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 90.2                         | 87        | 116        |
| EG093A-F: Cadmium                            | 7440-43-9                 | 0.2     | μg/L | <0.2              | 10 µg/L       | 88.8                         | 88        | 114        |
| EG093A-F: Chromium                           | 7440-47-3                 | 0.5     | μg/L | <0.5              | 10 µg/L       | 88.4                         | 83        | 115        |
| EG093A-F: Copper                             | 7440-50-8                 | 1       | µg/L | <1                | 20 µg/L       | 89.5                         | 81        | 117        |
| EG093A-F: Lead                               | 7439-92-1                 | 0.2     | µg/L | <0.2              | 10 µg/L       | 92.1                         | 80        | 117        |
| EG093A-F: Manganese                          | 7439-96-5                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 91.0                         | 80        | 119        |
| EG093A-F: Nickel                             | 7440-02-0                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 88.6                         | 87        | 117        |
| EG093A-F: Silver                             | 7440-22-4                 | 0.1     | µg/L | <0.1              | 10 µg/L       | 93.8                         | 80        | 127        |
| EG093A-F: Zinc                               | 7440-66-6                 | 5       | µg/L | <5                | 20 µg/L       | 83.6                         | 81        | 120        |
| EG093F: Dissolved Metals in Saline Water by  | ORC-ICPMS (QCLot: 207524  | 3)      |      |                   |               |                              |           |            |
| EG093B-F: Iron                               | 7439-89-6                 | 5       | µg/L | <5                | 50 µg/L       | 84.3                         | 78        | 123        |
| EG093T: Total Metals in Saline Water by ORC  | -ICPMS (QCLot: 2075223)   |         |      |                   |               |                              |           |            |
| EG093A-T: Aluminium                          | 7429-90-5                 | 5       | µg/L | <5                | 50 µg/L       | 85.9                         | 85        | 120        |
| EG093A-T: Arsenic                            | 7440-38-2                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 87.2                         | 86        | 117        |
| EG093A-T: Cadmium                            | 7440-43-9                 | 0.2     | µg/L | <0.2              | 10 µg/L       | 86.1                         | 84        | 115        |
| EG093A-T: Chromium                           | 7440-47-3                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 89.7                         | 84        | 120        |
| EG093A-T: Copper                             | 7440-50-8                 | 1       | µg/L | <1                | 20 µg/L       | 100                          | 84        | 119        |
| EG093A-T: Lead                               | 7439-92-1                 | 0.2     | µg/L | <0.2              | 10 µg/L       | 93.7                         | 84        | 120        |
| EG093A-T: Manganese                          | 7439-96-5                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 89.7                         | 86        | 124        |
| EG093A-T: Nickel                             | 7440-02-0                 | 0.5     | µg/L | <0.5              | 10 µg/L       | 89.3                         | 80        | 120        |
| EG093A-T: Silver                             | 7440-22-4                 | 0.1     | µg/L | <0.1              | 10 µg/L       | 91.9                         | 80        | 120        |
| EG093A-T: Zinc                               | 7440-66-6                 | 5       | µg/L | <5                | 20 µg/L       | 83.4                         | 81        | 124        |

| Page       | : 6 of 8                        |
|------------|---------------------------------|
| Work Order | : EB1829474                     |
| Client     | : BMT EASTERN AUSTRALIA PTY LTD |
| Project    | : B23483                        |



| Sub-Matrix: WATER                                                          | Method Blank (MB) Laboratory Control Spike (LCS) Report |       |      |        |               |                    |          |            |
|----------------------------------------------------------------------------|---------------------------------------------------------|-------|------|--------|---------------|--------------------|----------|------------|
|                                                                            |                                                         |       |      | Report | Spike         | Spike Recovery (%) | Recovery | Limits (%) |
| Method: Compound                                                           | CAS Number                                              | LOR   | Unit | Result | Concentration | LCS                | Low      | High       |
| EG093T: Total Metals in Saline Water by ORC-ICPMS(QCL                      | ot: 2075224)                                            |       |      |        |               |                    |          |            |
| EG093B-T: Iron                                                             | 7439-89-6                                               | 5     | μg/L | <5     | 50 µg/L       | 94.2               | 80       | 128        |
| EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS                       | (QCLot: 2087452                                         | )     |      |        |               |                    |          |            |
| EG094B-F: Iron                                                             | 7439-89-6                                               | 2     | μg/L | <2     | 50 µg/L       | 96.7               | 80       | 120        |
| EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS                       | (QCLot: 2087453                                         | )     |      |        |               |                    |          |            |
| EG094A-F: Aluminium                                                        | 7429-90-5                                               | 5     | μg/L | <5     | 50 µg/L       | 104                | 80       | 120        |
| EG094A-F: Arsenic                                                          | 7440-38-2                                               | 0.2   | µg/L | <0.2   | 10 µg/L       | 97.8               | 80       | 120        |
| EG094A-F: Cadmium                                                          | 7440-43-9                                               | 0.05  | μg/L | <0.05  | 10 µg/L       | 96.8               | 80       | 120        |
| EG094A-F: Chromium                                                         | 7440-47-3                                               | 0.2   | μg/L | <0.2   | 10 µg/L       | 93.8               | 80       | 120        |
| EG094A-F: Copper                                                           | 7440-50-8                                               | 0.5   | μg/L | <0.5   | 20 µg/L       | 98.2               | 80       | 120        |
| EG094A-F: Lead                                                             | 7439-92-1                                               | 0.1   | µg/L | <0.1   | 10 µg/L       | 100                | 80       | 120        |
| EG094A-F: Manganese                                                        | 7439-96-5                                               | 0.5   | μg/L | <0.5   | 10 µg/L       | 100                | 80       | 120        |
| EG094A-F: Nickel                                                           | 7440-02-0                                               | 0.5   | μg/L | <0.5   | 10 µg/L       | 98.2               | 80       | 120        |
| EG094A-F: Silver                                                           | 7440-22-4                                               | 0.1   | μg/L | <0.1   | 10 µg/L       | 88.8               | 80       | 120        |
| EG094A-F: Zinc                                                             | 7440-66-6                                               | 1     | μg/L | <1     | 20 µg/L       | 90.8               | 80       | 120        |
| EG094T: Total metals in Fresh water by ORC-ICPMS(QCL                       | ot: 2087455)                                            |       |      |        |               |                    |          |            |
| EG094B-T: Iron                                                             | 7439-89-6                                               | 2     | μg/L | <2     | 50 µg/L       | 104                | 80       | 120        |
| EG094T: Total metals in Fresh water by ORC-ICPMS(QCL                       | ot: 2087456)                                            |       |      |        |               |                    |          |            |
| EG094A-T: Aluminium                                                        | 7429-90-5                                               | 5     | µg/L | <5     | 50 µg/L       | 112                | 80       | 120        |
| EG094A-T: Arsenic                                                          | 7440-38-2                                               | 0.2   | µg/L | <0.2   | 10 µg/L       | 97.0               | 80       | 120        |
| EG094A-T: Cadmium                                                          | 7440-43-9                                               | 0.05  | µg/L | <0.05  | 10 µg/L       | 94.9               | 80       | 120        |
| EG094A-T: Chromium                                                         | 7440-47-3                                               | 0.2   | μg/L | <0.2   | 10 µg/L       | 98.7               | 80       | 120        |
| EG094A-T: Copper                                                           | 7440-50-8                                               | 0.5   | μg/L | <0.5   | 20 µg/L       | 104                | 80       | 120        |
| EG094A-T: Lead                                                             | 7439-92-1                                               | 0.1   | μg/L | <0.1   | 10 µg/L       | 101                | 80       | 120        |
| EG094A-T: Manganese                                                        | 7439-96-5                                               | 0.5   | μg/L | <0.5   | 10 µg/L       | 103                | 80       | 120        |
| EG094A-T: Nickel                                                           | 7440-02-0                                               | 0.5   | μg/L | <0.5   | 10 µg/L       | 100                | 80       | 120        |
| EG094A-T: Silver                                                           | 7440-22-4                                               | 0.1   | μg/L | <0.1   | 10 µg/L       | 88.8               | 80       | 120        |
| EG094A-T: Zinc                                                             | 7440-66-6                                               | 1     | μg/L | <1     | 20 µg/L       | 92.9               | 80       | 120        |
| EK255A: Ammonia (QCLot: 2078487)                                           |                                                         |       |      |        |               |                    |          |            |
| EK255A-SW: Ammonia as N                                                    | 7664-41-7                                               | 0.005 | mg/L | <0.005 | 0.1 mg/L      | 102                | 80       | 120        |
| EK257A: Nitrite (QCLot: 2078485)                                           |                                                         |       |      |        |               |                    |          |            |
| EK257A-SW: Nitrite as N                                                    | 14797-65-0                                              | 0.002 | mg/L | <0.002 | 1 mg/L        | 91.7               | 80       | 120        |
| EK259A: Nitrite and Nitrate (NOx) (QCLot: 2078484)                         |                                                         |       |      |        |               |                    |          |            |
| EK259A-SW: Nitrite + Nitrate as N                                          |                                                         | 0.002 | mg/L | <0.002 | 0.1 mg/L      | 94.7               | 80       | 120        |
|                                                                            |                                                         |       |      |        |               |                    |          |            |
| EK262A: Total Nitrogen (QCLot: 2078491)<br>EK262PA-SW: Total Nitrogen as N |                                                         | 0.025 | mg/L | <0.025 | 1 mg/L        | 96.6               | 80       | 120        |
|                                                                            |                                                         | 0.020 |      | -0.020 | , mg/L        | 00.0               |          | 120        |
| EK267A: Total Phosphorus (Persulfate Digestion) (QCLot:                    |                                                         | 0.005 | ma/l | <0.005 | 0.42 ~~//     | 97.9               | 80       | 120        |
| EK267PA-SW: Total Phosphorus as P                                          |                                                         | 0.005 | mg/L | <0.005 | 0.42 mg/L     | 97.9               | 80       | 120        |



| Sub-Matrix: WATER                                  |            |       |       | Method Blank (MB) |               | Laboratory Control Spike (LC | S) Report |            |
|----------------------------------------------------|------------|-------|-------|-------------------|---------------|------------------------------|-----------|------------|
|                                                    |            |       |       | Report            | Spike         | Spike Recovery (%)           | Recovery  | Limits (%) |
| Method: Compound                                   | CAS Number | LOR   | Unit  | Result            | Concentration | LCS                          | Low       | High       |
| EK271A: Reactive Phosphorus (QCLot: 2078486)       |            |       |       |                   |               |                              |           |            |
| EK271A-SW: Reactive Phosphorus as P                | 14265-44-2 | 0.001 | mg/L  | <0.001            | 0.1 mg/L      | 94.5                         | 84        | 120        |
| EP005: Total Organic Carbon (TOC) (QCLot: 2079231) |            |       |       |                   |               |                              |           |            |
| EP005: Total Organic Carbon                        |            | 1     | mg/L  | <1                | 10 mg/L       | 99.4                         | 79        | 113        |
|                                                    |            |       |       | <1                | 100 mg/L      | 104                          | 79        | 113        |
| EP008: Chlorophyll (QCLot: 2077664)                |            |       |       |                   |               |                              |           |            |
| EP008: Chlorophyll a                               |            | 1     | mg/m³ | <1                | 16 mg/m³      | 93.8                         | 85        | 123        |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| ub-Matrix: WATER    |                                       |                     |            | M             | atrix Spike (MS) Report |            |            |
|---------------------|---------------------------------------|---------------------|------------|---------------|-------------------------|------------|------------|
|                     |                                       |                     |            | Spike         | SpikeRecovery(%)        | Recovery L | .imits (%) |
| aboratory sample ID | Client sample ID                      | Method: Compound    | CAS Number | Concentration | MS                      | Low        | High       |
| EG035F: Dissolve    | d Mercury by FIMS (QCLot: 2075256)    |                     |            |               |                         |            |            |
| EB1829467-042       | Anonymous                             | EG035F-LL: Mercury  | 7439-97-6  | 0.002 mg/L    | 92.6                    | 70         | 130        |
| G035T: Total Me     | rcury by FIMS (QCLot: 2075250)        |                     |            |               |                         |            |            |
| EB1829467-042       | Anonymous                             | EG035T-LL: Mercury  | 7439-97-6  | 0.002 mg/L    | 93.8                    | 70         | 130        |
| EG093F: Dissolve    | d Metals in Saline Water by ORC-ICPMS | (QCLot: 2075242)    |            |               |                         |            |            |
| EB1829467-042       | Anonymous                             | EG093A-F: Arsenic   | 7440-38-2  | 50 µg/L       | 95.8                    | 70         | 130        |
|                     |                                       | EG093A-F: Cadmium   | 7440-43-9  | 50 µg/L       | 90.6                    | 70         | 130        |
|                     |                                       | EG093A-F: Chromium  | 7440-47-3  | 50 µg/L       | 96.2                    | 70         | 130        |
|                     |                                       | EG093A-F: Copper    | 7440-50-8  | 100 µg/L      | 95.0                    | 70         | 130        |
|                     |                                       | EG093A-F: Lead      | 7439-92-1  | 50 µg/L       | 91.9                    | 70         | 130        |
|                     |                                       | EG093A-F: Manganese | 7439-96-5  | 50 µg/L       | 93.6                    | 70         | 130        |
|                     |                                       | EG093A-F: Nickel    | 7440-02-0  | 50 µg/L       | 91.9                    | 70         | 130        |
|                     |                                       | EG093A-F: Zinc      | 7440-66-6  | 100 µg/L      | 89.9                    | 70         | 130        |
| EG093T: Total Met   | tals in Saline Water by ORC-ICPMS(QCL | _ot: 2075223)       |            |               |                         |            |            |
| EB1829467-042       | Anonymous                             | EG093A-T: Arsenic   | 7440-38-2  | 50 µg/L       | 99.2                    | 70         | 130        |
|                     |                                       | EG093A-T: Cadmium   | 7440-43-9  | 50 µg/L       | 94.9                    | 70         | 130        |
|                     |                                       | EG093A-T: Chromium  | 7440-47-3  | 50 µg/L       | 95.8                    | 70         | 130        |
|                     |                                       | EG093A-T: Copper    | 7440-50-8  | 100 µg/L      | 110                     | 70         | 130        |
|                     |                                       | EG093A-T: Lead      | 7439-92-1  | 50 µg/L       | 110                     | 70         | 130        |
|                     |                                       | EG093A-T: Manganese | 7439-96-5  | 50 µg/L       | 96.7                    | 70         | 130        |
|                     |                                       | EG093A-T: Nickel    | 7440-02-0  | 50 µg/L       | 94.3                    | 70         | 130        |
|                     |                                       | EG093A-T: Zinc      | 7440-66-6  | 100 µg/L      | 94.0                    | 70         | 130        |

# Page: 8 of 8Work Order: EB1829474Client: BMT EASTERN AUSTRALIA PTY LTDProject: B23483



| ub-Matrix: WATER         |                                                |                                     |            | M             | atrix Spike (MS) Report |            |           |
|--------------------------|------------------------------------------------|-------------------------------------|------------|---------------|-------------------------|------------|-----------|
|                          |                                                |                                     |            | Spike         | SpikeRecovery(%)        | Recovery I | imits (%) |
| aboratory sample ID      | Client sample ID                               | Method: Compound                    | CAS Number | Concentration | MS                      | Low        | High      |
| G094F: Dissolve          | d Metals in Fresh Water by ORC-ICPMS (QCLot:   | 2087453) - continued                |            |               |                         |            |           |
| EB1829474-011            | FB-B-A                                         | EG094A-F: Arsenic                   | 7440-38-2  | 50 µg/L       | 98.6                    | 70         | 130       |
|                          |                                                | EG094A-F: Cadmium                   | 7440-43-9  | 50 µg/L       | 98.6                    | 70         | 130       |
|                          |                                                | EG094A-F: Chromium                  | 7440-47-3  | 50 µg/L       | 100                     | 70         | 130       |
|                          |                                                | EG094A-F: Copper                    | 7440-50-8  | 100 µg/L      | 99.3                    | 70         | 130       |
|                          |                                                | EG094A-F: Lead                      | 7439-92-1  | 50 µg/L       | 97.8                    | 70         | 130       |
|                          |                                                | EG094A-F: Manganese                 | 7439-96-5  | 50 µg/L       | 102                     | 70         | 130       |
|                          |                                                | EG094A-F: Nickel                    | 7440-02-0  | 50 µg/L       | 98.8                    | 70         | 130       |
|                          |                                                | EG094A-F: Zinc                      | 7440-66-6  | 100 µg/L      | 101                     | 70         | 130       |
| EG094T: Total me         | als in Fresh water by ORC-ICPMS(QCLot: 2087    | 456)                                |            |               |                         |            |           |
| EB1829467-002            | Anonymous                                      | EG094A-T: Arsenic                   | 7440-38-2  | 50 µg/L       | 100                     | 70         | 130       |
|                          |                                                | EG094A-T: Cadmium                   | 7440-43-9  | 50 µg/L       | 98.9                    | 70         | 130       |
|                          |                                                | EG094A-T: Chromium                  | 7440-47-3  | 50 µg/L       | 103                     | 70         | 130       |
|                          |                                                | EG094A-T: Copper                    | 7440-50-8  | 100 µg/L      | 104                     | 70         | 130       |
|                          |                                                | EG094A-T: Lead                      | 7439-92-1  | 50 µg/L       | 97.6                    | 70         | 130       |
|                          |                                                | EG094A-T: Manganese                 | 7439-96-5  | 50 µg/L       | 104                     | 70         | 130       |
|                          |                                                | EG094A-T: Nickel                    | 7440-02-0  | 50 µg/L       | 103                     | 70         | 130       |
| EK255A: Ammonia          | a (QCLot: 2078487)                             |                                     |            |               |                         |            |           |
| EB1829474-004            | GC-B-B                                         | EK255A-SW: Ammonia as N             | 7664-41-7  | 0.1 mg/L      | 98.2                    | 70         | 130       |
| EK257A: Nitrite(C        | QCLot: 2078485)                                |                                     |            |               |                         |            |           |
| EB1829474-005            | GC-B-C                                         | EK257A-SW: Nitrite as N             | 14797-65-0 | 0.1 mg/L      | 102                     | 70         | 130       |
| EK259A: Nitrite an       | d Nitrate (NOx) (QCLot: 2078484)               |                                     |            |               |                         |            |           |
| EB1829474-004            | GC-B-B                                         | EK259A-SW: Nitrite + Nitrate as N   |            | 0.1 mg/L      | 118                     | 70         | 130       |
| EK262A: Total Nit        | ogen (QCLot: 2078491)                          |                                     |            |               |                         |            |           |
| EB1829474-004            | GC-B-B                                         | EK262PA-SW: Total Nitrogen as N     |            | 0.5 mg/L      | 112                     | 70         | 130       |
| EK267A: Total Pho        | osphorus (Persulfate Digestion) (QCLot: 207849 | 0)                                  |            |               |                         |            |           |
| EB1829474-004            | GC-B-B                                         | EK267PA-SW: Total Phosphorus as P   |            | 0.5 mg/L      | 93.8                    | 70         | 130       |
| EK271A: Reactive         | Phosphorus (QCLot: 2078486)                    |                                     |            |               |                         |            |           |
| EB1829474-004            | GC-B-B                                         | EK271A-SW: Reactive Phosphorus as P | 14265-44-2 | 0.1 mg/L      | 92.5                    | 70         | 130       |
| EP005: Total <u>Orga</u> | nic Carbon (TOC) (QCLot: 2079231)              |                                     |            |               |                         |            |           |
| EB1829474-003            | GC-B-A                                         | EP005: Total Organic Carbon         |            | 100 mg/L      | 122                     | 70         | 130       |
|                          |                                                |                                     |            | , v           |                         |            | L         |



|              | ED4000474                       |                         |                                   |
|--------------|---------------------------------|-------------------------|-----------------------------------|
| Work Order   | : EB1829474                     | Page                    | : 1 of 10                         |
| Client       | : BMT EASTERN AUSTRALIA PTY LTD | Laboratory              | : Environmental Division Brisbane |
| Contact      | : DR DARREN RICHARDSON          | Telephone               | : +61-7-3243 7222                 |
| Project      | : B23483                        | Date Samples Received   | : 04-Dec-2018                     |
| Site         | :                               | Issue Date              | : 13-Dec-2018                     |
| Sampler      | :                               | No. of samples received | : 12                              |
| Order number | :                               | No. of samples analysed | : 12                              |

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# Summary of Outliers

## **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

## **Outliers : Analysis Holding Time Compliance**

• Analysis Holding Time Outliers exist - please see following pages for full details.

## **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.



## **Outliers : Analysis Holding Time Compliance**

Matrix: WATER

| Method                            |                | Ex             | traction / Preparation |         |               | Analysis         |         |
|-----------------------------------|----------------|----------------|------------------------|---------|---------------|------------------|---------|
| Container / Client Sample ID(s)   |                | Date extracted | Due for extraction     | Days    | Date analysed | Due for analysis | Days    |
|                                   |                |                |                        | overdue |               |                  | overdue |
| EK262A: Total Nitrogen            |                |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural    |                |                |                        |         |               |                  |         |
| GC-B-A,                           | GC-B-B,        | 06-Dec-2018    | 04-Dec-2018            | 2       | 06-Dec-2018   | 04-Dec-2018      | 2       |
| GC-B-C,                           | GC-B-D,        |                |                        |         |               |                  |         |
| WCC-B-A,                          | WCC-B-B,       |                |                        |         |               |                  |         |
| WCC-B-C,                          | WCC-B-D,       |                |                        |         |               |                  |         |
| FB-B-A,                           | RB-B-A         |                |                        |         |               |                  |         |
| EK267A: Total Phosphorus (Persulf | ate Digestion) |                |                        |         |               |                  |         |
| Clear Plastic Bottle - Natural    |                |                |                        |         |               |                  |         |
| GC-B-A,                           | GC-B-B,        | 06-Dec-2018    | 04-Dec-2018            | 2       | 06-Dec-2018   | 04-Dec-2018      | 2       |
| GC-B-C,                           | GC-B-D,        |                |                        |         |               |                  |         |
| WCC-B-A,                          | WCC-B-B,       |                |                        |         |               |                  |         |
| WCC-B-C,                          | WCC-B-D,       |                |                        |         |               |                  |         |
| FB-B-A,                           | RB-B-A         |                |                        |         |               |                  |         |

# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

| Matrix: WATER                              |          |             |                |                        | Evaluation | n: × = Holding time | e breach ; ✓ = With | in holding time |  |
|--------------------------------------------|----------|-------------|----------------|------------------------|------------|---------------------|---------------------|-----------------|--|
| Method                                     |          | Sample Date | E              | traction / Preparation |            | Analysis            |                     |                 |  |
| Container / Client Sample ID(s)            |          |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis    | Evaluation      |  |
| EA025: Total Suspended Solids dried at 104 | 4 ± 2°C  |             |                |                        |            |                     |                     |                 |  |
| Clear Plastic Bottle - Natural (EA025)     |          |             |                |                        |            |                     |                     |                 |  |
| GC-B-A,                                    | GC-B-B,  | 03-Dec-2018 |                |                        |            | 06-Dec-2018         | 10-Dec-2018         | ✓               |  |
| GC-B-C,                                    | WCC-B-A, |             |                |                        |            |                     |                     |                 |  |
| WCC-B-B,                                   | WCC-B-C  |             |                |                        |            |                     |                     |                 |  |
| EA150: Particle Sizing                     |          |             |                |                        |            |                     |                     |                 |  |
| Clear Plastic Bottle - Natural (EA154)     |          |             |                |                        |            |                     |                     |                 |  |
| GC-B-A,                                    | GC-O-A   | 01-Dec-2018 |                |                        |            | 07-Dec-2018         | 30-May-2019         | ✓               |  |
| Clear Plastic Bottle - Natural (EA154)     |          |             |                |                        |            |                     |                     |                 |  |
| WCC-B-A                                    |          | 03-Dec-2018 |                |                        |            | 07-Dec-2018         | 01-Jun-2019         | $\checkmark$    |  |

| Page       | : 3 of 10                       |
|------------|---------------------------------|
| Work Order | : EB1829474                     |
| Client     | : BMT EASTERN AUSTRALIA PTY LTD |
| Project    | : B23483                        |



| Matrix: WATER                                                  |             |                |                        | Evaluation | : × = Holding time | breach ; 🗸 = Withi | in holding tim |
|----------------------------------------------------------------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                                         | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)                                |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EG035F: Dissolved Mercury by FIMS                              |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Filtered; Lab-acidified (EG035F-LL)     |             |                |                        |            |                    |                    |                |
| GC-B-A, GC-B-B,                                                | 03-Dec-2018 |                |                        |            | 05-Dec-2018        | 31-Dec-2018        | ✓              |
| GC-B-C, GC-B-D,                                                |             |                |                        |            |                    |                    |                |
| WCC-B-A, WCC-B-B,                                              |             |                |                        |            |                    |                    |                |
| WCC-B-C, WCC-B-D,                                              |             |                |                        |            |                    |                    |                |
| FB-B-A, RB-B-A                                                 |             |                |                        |            |                    |                    |                |
| EG035T: Total Mercury by FIMS                                  |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Unfiltered; Lab-acidified (EG035T-LL)   |             |                |                        |            |                    |                    |                |
| GC-B-A, GC-B-B,                                                | 03-Dec-2018 |                |                        |            | 10-Dec-2018        | 31-Dec-2018        | 1              |
| GC-B-C, GC-B-D,                                                |             |                |                        |            |                    |                    | -              |
| WCC-B-A, WCC-B-B,                                              |             |                |                        |            |                    |                    |                |
| WCC-B-C, WCC-B-D.                                              |             |                |                        |            |                    |                    |                |
| FB-B-A. RB-B-A                                                 |             |                |                        |            |                    |                    |                |
| EG093F: Dissolved Metals in Saline Water by ORC-ICPMS          |             |                |                        |            | 1                  | 1                  |                |
| Clear Plastic Bottle - Filtered; Lab-acidified (EG093A-F)      |             |                |                        |            |                    |                    |                |
| GC-B-A, GC-B-B,                                                | 03-Dec-2018 |                |                        |            | 06-Dec-2018        | 01-Jun-2019        | 1              |
| GC-B-C, GC-B-D,                                                |             |                |                        |            |                    |                    |                |
| WCC-B-A, WCC-B-B,                                              |             |                |                        |            |                    |                    |                |
| WCC-B-C, WCC-B-D                                               |             |                |                        |            |                    |                    |                |
| EG093T: Total Metals in Saline Water by ORC-ICPMS              |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Unfiltered; Lab-acidified (EG093B-T)    |             |                |                        |            |                    |                    |                |
| GC-B-A, GC-B-B,                                                | 03-Dec-2018 | 07-Dec-2018    | 01-Jun-2019            | 1          | 07-Dec-2018        | 01-Jun-2019        | ✓              |
| GC-B-C, GC-B-D,                                                |             |                |                        |            |                    |                    | -              |
| WCC-B-A, WCC-B-B,                                              |             |                |                        |            |                    |                    |                |
| WCC-B-C, WCC-B-D                                               |             |                |                        |            |                    |                    |                |
| EG094F: Dissolved Metals in Fresh Water by ORC-ICPMS           |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Filtered; Lab-acidified (EG094B-F)      |             |                |                        |            |                    |                    |                |
| FB-B-A, RB-B-A                                                 | 03-Dec-2018 |                |                        |            | 11-Dec-2018        | 01-Jun-2019        | ✓              |
| EG094T: Total metals in Fresh water by ORC-ICPMS               |             |                |                        |            |                    |                    |                |
| Clear Plastic Bottle - Unfiltered; Lab-acidified (EG094B-T)    |             |                |                        |            |                    |                    |                |
| FB-B-A, RB-B-A                                                 | 03-Dec-2018 | 11-Dec-2018    | 01-Jun-2019            | ✓          | 11-Dec-2018        | 01-Jun-2019        | ✓              |
| EK255A: Ammonia                                                |             |                |                        |            |                    |                    |                |
| Clear Plastic - Filtered & Frozen (AS/ISO) - UT Nu (EK255A-SW) |             |                |                        |            |                    |                    |                |
| GC-B-A, GC-B-B,                                                | 03-Dec-2018 |                |                        |            | 07-Dec-2018        | 31-Dec-2018        | ✓              |
| GC-B-C, GC-B-D,                                                |             |                |                        |            |                    |                    |                |
| WCC-B-A, WCC-B-B,                                              |             |                |                        |            |                    |                    |                |
| WCC-B-C, WCC-B-D.                                              |             |                |                        |            |                    |                    |                |
|                                                                |             |                |                        |            |                    |                    |                |

| Page       | : 4 of 10                       |
|------------|---------------------------------|
| Work Order | : EB1829474                     |
| Client     | : BMT EASTERN AUSTRALIA PTY LTD |
| Project    | : B23483                        |



| Matrix: WATER                                                        |                            |             |                |                         | Evaluation | n: × = Holding time | breach ; ✓ = With | in holding tim        |
|----------------------------------------------------------------------|----------------------------|-------------|----------------|-------------------------|------------|---------------------|-------------------|-----------------------|
| Method                                                               |                            | Sample Date | Ex             | ktraction / Preparation |            |                     | Analysis          |                       |
| Container / Client Sample ID(s)                                      |                            |             | Date extracted | Due for extraction      | Evaluation | Date analysed       | Due for analysis  | Evaluation            |
| EK257A: Nitrite                                                      |                            |             |                |                         |            |                     |                   |                       |
| Clear Plastic - Filtered & Frozen (AS                                | ;/ISO) - UT Nu (EK257A-SW) |             |                |                         |            |                     |                   |                       |
| GC-B-A,                                                              | GC-B-B,                    | 03-Dec-2018 |                |                         |            | 07-Dec-2018         | 07-Dec-2018       | <ul> <li>✓</li> </ul> |
| GC-B-C,                                                              | GC-B-D,                    |             |                |                         |            |                     |                   |                       |
| WCC-B-A,                                                             | WCC-B-B,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-C,                                                             | WCC-B-D,                   |             |                |                         |            |                     |                   |                       |
| FB-B-A,                                                              | RB-B-A                     |             |                |                         |            |                     |                   |                       |
| EK259A: Nitrite and Nitrate (NOx)                                    |                            |             |                |                         |            |                     |                   |                       |
| Clear Plastic - Filtered & Frozen (AS                                |                            |             |                |                         |            |                     |                   |                       |
| GC-B-A,                                                              | GC-B-B,                    | 03-Dec-2018 |                |                         |            | 07-Dec-2018         | 31-Dec-2018       | <ul><li>✓</li></ul>   |
| GC-B-C,                                                              | GC-B-D,                    |             |                |                         |            |                     |                   |                       |
| WCC-B-A,                                                             | WCC-B-B,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-C,                                                             | WCC-B-D,                   |             |                |                         |            |                     |                   |                       |
| FB-B-A,                                                              | RB-B-A                     |             |                |                         |            |                     |                   |                       |
| EK262A: Total Nitrogen                                               |                            |             |                |                         |            |                     |                   |                       |
| Clear Plastic Bottle - Natural (EK262                                |                            |             |                | 04 D 0040               |            |                     | 04 D 0040         |                       |
| GC-B-A,                                                              | GC-B-B,                    | 03-Dec-2018 | 06-Dec-2018    | 04-Dec-2018             | *          | 06-Dec-2018         | 04-Dec-2018       | ×                     |
| GC-B-C,                                                              | GC-B-D,                    |             |                |                         |            |                     |                   |                       |
| WCC-B-A,                                                             | WCC-B-B,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-C,                                                             | WCC-B-D,                   |             |                |                         |            |                     |                   |                       |
| FB-B-A,                                                              | RB-B-A                     |             |                |                         |            |                     |                   |                       |
| EK267A: Total Phosphorus (Persul                                     |                            |             |                |                         |            |                     | 1                 |                       |
| Clear Plastic Bottle - Natural (EK267                                |                            | 03-Dec-2018 | 06-Dec-2018    | 04-Dec-2018             |            | 06-Dec-2018         | 04-Dec-2018       |                       |
| GC-B-A,                                                              | GC-B-B,                    | 03-Dec-2018 | 00-Dec-2010    | 04-Dec-2018             | *          | 00-Dec-2010         | 04-Dec-2018       | ×                     |
| GC-B-C,                                                              | GC-B-D,                    |             |                |                         |            |                     |                   |                       |
| WCC-B-A,                                                             | WCC-B-B,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-C,                                                             | WCC-B-D,                   |             |                |                         |            |                     |                   |                       |
| FB-B-A,                                                              | RB-B-A                     |             |                |                         |            |                     |                   |                       |
| EK271A: Reactive Phosphorus<br>Clear Plastic - Filtered & Frozen (AS |                            |             |                |                         |            |                     |                   |                       |
| GC-B-A,                                                              | GC-B-B.                    | 03-Dec-2018 |                |                         |            | 07-Dec-2018         | 31-Dec-2018       | 1                     |
| GC-B-C,                                                              | GC-B-D,                    |             |                |                         |            |                     |                   | •                     |
| WCC-B-A,                                                             | WCC-B-B,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-C,                                                             | WCC-B-D,                   |             |                |                         |            |                     |                   |                       |
| FB-B-A,                                                              | RB-B-A                     |             |                |                         |            |                     |                   |                       |
| EP005: Total Organic Carbon (TOC                                     |                            |             |                |                         |            |                     |                   | 1                     |
| Amber TOC Vial - Sulfuric Acid (EPO                                  |                            |             |                |                         |            |                     |                   |                       |
| GC-B-A,                                                              | GC-B-B,                    | 03-Dec-2018 |                |                         |            | 06-Dec-2018         | 31-Dec-2018       | 1                     |
| GC-B-C,                                                              | WCC-B-A,                   |             |                |                         |            |                     |                   |                       |
| WCC-B-B,                                                             | WCC-B-C                    |             |                |                         |            |                     |                   |                       |

| Page       | : 5 of 10                       |
|------------|---------------------------------|
| Work Order | : EB1829474                     |
| Client     | : BMT EASTERN AUSTRALIA PTY LTD |
| Project    | : B23483                        |



| Matrix: WATER                         |          |             |                |                        | Evaluation | : × = Holding time | breach ; ✓ = Withi | n holding time |
|---------------------------------------|----------|-------------|----------------|------------------------|------------|--------------------|--------------------|----------------|
| Method                                |          | Sample Date | Ex             | traction / Preparation |            |                    | Analysis           |                |
| Container / Client Sample ID(s)       |          |             | Date extracted | Due for extraction     | Evaluation | Date analysed      | Due for analysis   | Evaluation     |
| EP008: Chlorophyll a & Pheophytin a   |          |             |                |                        |            |                    |                    |                |
| White Plastic Bottle - Unpreserved (E | P008)    |             |                |                        |            |                    |                    |                |
| GC-B-A,                               | GC-B-B,  | 03-Dec-2018 |                |                        |            | 05-Dec-2018        | 05-Dec-2018        | ✓              |
| GC-B-C,                               | WCC-B-A, |             |                |                        |            |                    |                    |                |
| WCC-B-B,                              | WCC-B-C  |             |                |                        |            |                    |                    |                |



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Quality Control Sample Type                               |            |    | ount    | Rate (%) |          |                       | Quality Control Specification  |
|-----------------------------------------------------------|------------|----|---------|----------|----------|-----------------------|--------------------------------|
| Analytical Methods                                        | Method     | 20 | Regular | Actual   | Expected | Evaluation            |                                |
| _aboratory Duplicates (DUP)                               |            |    |         |          |          |                       |                                |
| Ammonia as N - Ultra-Trace in Saline Waters               | EK255A-SW  | 1  | 10      | 10.00    | 10.00    | ✓                     | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Mercury by FIMS - Low Level                     | EG035F-LL  | 2  | 14      | 14.29    | 10.00    | ✓                     | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS     | EG094A-F   | 1  | 6       | 16.67    | 10.00    | ✓                     | NEPM 2013 B3 & ALS QC Standard |
| Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS     | EG094B-F   | 1  | 4       | 25.00    | 10.00    | ~                     | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Saline Water -Suite A by ORC-ICPMS     | EG093A-F   | 2  | 12      | 16.67    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Saline Water -Suite B by ORC-ICPMS     | EG093B-F   | 2  | 12      | 16.67    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| itrite and Nitrate as N - Ultra-Trace in Saline Waters    | EK259A-SW  | 1  | 10      | 10.00    | 10.00    | ~                     | NEPM 2013 B3 & ALS QC Standard |
| itrite as N - Ultra-Trace in Saline Waters                | EK257A-SW  | 1  | 10      | 10.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| eactive Phosphorus as P - Ultra-Trace in Saline Water     | EK271A-SW  | 1  | 10      | 10.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| uspended Solids                                           | EA025      | 3  | 23      | 13.04    | 10.00    | ~                     | NEPM 2013 B3 & ALS QC Standard |
| otal Mercury by FIMS - Low Level                          | EG035T-LL  | 2  | 14      | 14.29    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Fresh Water -Suite A by ORC-ICPMS          | EG094A-T   | 1  | 4       | 25.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Fresh Water -Suite B by ORC-ICPMS          | EG094B-T   | 1  | 4       | 25.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Saline Water Suite A by ORC-ICPMS          | EG093A-T   | 2  | 12      | 16.67    | 10.00    | ✓                     | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Saline Water -Suite B by ORC-ICPMS         | EG093B-T   | 2  | 12      | 16.67    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline     | EK262PA-SW | 1  | 10      | 10.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Organic Carbon                                       | EP005      | 2  | 19      | 10.53    | 10.00    | ✓                     | NEPM 2013 B3 & ALS QC Standard |
| otal Phosphorus/Persulfate Digestion/ Ultra Trace /Saline | EK267PA-SW | 1  | 10      | 10.00    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| aboratory Control Samples (LCS)                           |            |    |         |          |          |                       |                                |
| mmonia as N - Ultra-Trace in Saline Waters                | EK255A-SW  | 1  | 10      | 10.00    | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| hlorophyll a and Pheophytin a                             | EP008      | 1  | 20      | 5.00     | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| issolved Mercury by FIMS - Low Level                      | EG035F-LL  | 1  | 14      | 7.14     | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Fresh Water -Suite A by ORC-ICPMS      | EG094A-F   | 1  | 6       | 16.67    | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Fresh Water -Suite B by ORC-ICPMS      | EG094B-F   | 1  | 4       | 25.00    | 5.00     | <ul> <li>✓</li> </ul> | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Saline Water -Suite A by ORC-ICPMS     | EG093A-F   | 1  | 12      | 8.33     | 5.00     | <u> </u>              | NEPM 2013 B3 & ALS QC Standard |
| issolved Metals in Saline Water -Suite B by ORC-ICPMS     | EG093B-F   | 1  | 12      | 8.33     | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| itrite and Nitrate as N - Ultra-Trace in Saline Waters    | EK259A-SW  | 1  | 10      | 10.00    | 5.00     | <u> </u>              | NEPM 2013 B3 & ALS QC Standard |
| itrite as N - Ultra-Trace in Saline Waters                | EK257A-SW  | 1  | 10      | 10.00    | 5.00     | <u> </u>              | NEPM 2013 B3 & ALS QC Standard |
| eactive Phosphorus as P - Ultra-Trace in Saline Water     | EK271A-SW  | 1  | 10      | 10.00    | 5.00     | 1                     | NEPM 2013 B3 & ALS QC Standard |
| uspended Solids                                           | EA025      | 4  | 23      | 17.39    | 10.00    | 1                     | NEPM 2013 B3 & ALS QC Standard |
| otal Mercury by FIMS - Low Level                          | EG035T-LL  | 1  | 14      | 7.14     | 5.00     | <br>✓                 | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Fresh Water -Suite A by ORC-ICPMS          | EG094A-T   | 1  | 4       | 25.00    | 5.00     |                       | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Fresh Water -Suite B by ORC-ICPMS          | EG094B-T   | 1  | 4       | 25.00    | 5.00     |                       | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Saline Water Suite A by ORC-ICPMS          | EG093A-T   | 1  | 12      | 8.33     | 5.00     |                       | NEPM 2013 B3 & ALS QC Standard |
| otal Metals in Saline Water -Suite B by ORC-ICPMS         | EG093B-T   | 1  | 12      | 8.33     | 5.00     | <u> </u>              | NEPM 2013 B3 & ALS QC Standard |
| otal Nitrogen/Persulfate Digestion/Ultra-Trace/Saline     | EK262PA-SW | 1  | 10      | 10.00    | 5.00     |                       | NEPM 2013 B3 & ALS QC Standard |

# Page : 7 of 10 Work Order : EB1829474 Client : BMT EASTERN AUSTRALIA PTY LTD Project : B23483



| Matrix: WATER                                              |            |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification ; $\checkmark$ = Quality Control frequency within specification. |
|------------------------------------------------------------|------------|----|---------|-----------|-------------------|-----------------|-------------------------------------------------------------------------------------------|
| Quality Control Sample Type                                |            | С  | ount    | Rate (%)  |                   |                 | Quality Control Specification                                                             |
| Analytical Methods                                         | Method     | 00 | Reaular | Actual    | Expected          | Evaluation      |                                                                                           |
| Laboratory Control Samples (LCS) - Continued               |            |    |         |           |                   |                 |                                                                                           |
| Total Organic Carbon                                       | EP005      | 2  | 19      | 10.53     | 10.00             | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline | EK267PA-SW | 1  | 10      | 10.00     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Method Blanks (MB)                                         |            |    |         |           |                   |                 |                                                                                           |
| Ammonia as N - Ultra-Trace in Saline Waters                | EK255A-SW  | 1  | 10      | 10.00     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Chlorophyll a and Pheophytin a                             | EP008      | 1  | 20      | 5.00      | 5.00              | ~               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Mercury by FIMS - Low Level                      | EG035F-LL  | 1  | 14      | 7.14      | 5.00              | ~               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS      | EG094A-F   | 1  | 6       | 16.67     | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Fresh Water -Suite B by ORC-ICPMS      | EG094B-F   | 1  | 4       | 25.00     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Saline Water -Suite A by ORC-ICPMS     | EG093A-F   | 1  | 12      | 8.33      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Saline Water -Suite B by ORC-ICPMS     | EG093B-F   | 1  | 12      | 8.33      | 5.00              | ✓<br>✓          | NEPM 2013 B3 & ALS QC Standard                                                            |
| Nitrite and Nitrate as N - Ultra-Trace in Saline Waters    | EK259A-SW  | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Nitrite as N - Ultra-Trace in Saline Waters                | EK257A-SW  | 1  | 10      | 10.00     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Reactive Phosphorus as P - Ultra-Trace in Saline Water     | EK271A-SW  | 1  | 10      | 10.00     | 5.00              | <u> </u>        | NEPM 2013 B3 & ALS QC Standard                                                            |
| Suspended Solids                                           | EA025      | 2  | 23      | 8.70      | 5.00              | <u> </u>        | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS - Low Level                          | EG035T-LL  | 1  | 14      | 7.14      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Fresh Water -Suite A by ORC-ICPMS          | EG094A-T   | 1  | 4       | 25.00     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Fresh Water -Suite B by ORC-ICPMS          | EG094B-T   | 1  | 4       | 25.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Saline Water Suite A by ORC-ICPMS          | EG093A-T   | 1  | 12      | 8.33      | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Saline Water -Suite B by ORC-ICPMS         | EG093B-T   | 1  | 12      | 8.33      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline     | EK262PA-SW | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Organic Carbon                                       | EP005      | 1  | 19      | 5.26      | 5.00              | ×               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline | EK267PA-SW | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Matrix Spikes (MS)                                         |            |    |         |           |                   | _               |                                                                                           |
| Ammonia as N - Ultra-Trace in Saline Waters                | EK255A-SW  | 1  | 10      | 10.00     | 5.00              | 1               | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Mercury by FIMS - Low Level                      | EG035F-LL  | 1  | 14      | 7.14      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Fresh Water -Suite A by ORC-ICPMS      | EG094A-F   | 1  | 6       | 16.67     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Dissolved Metals in Saline Water -Suite A by ORC-ICPMS     | EG093A-F   | 1  | 12      | 8.33      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Nitrite and Nitrate as N - Ultra-Trace in Saline Waters    | EK259A-SW  | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Nitrite as N - Ultra-Trace in Saline Waters                | EK257A-SW  | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Reactive Phosphorus as P - Ultra-Trace in Saline Water     | EK271A-SW  | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Mercury by FIMS - Low Level                          | EG035T-LL  | 1  | 14      | 7.14      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Fresh Water -Suite A by ORC-ICPMS          | EG094A-T   | 1  | 4       | 25.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Metals in Saline Water Suite A by ORC-ICPMS          | EG093A-T   | 1  | 12      | 8.33      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Nitrogen/Persulfate Digestion/Ultra-Trace/Saline     | EK262PA-SW | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Organic Carbon                                       | EP005      | 1  | 19      | 5.26      | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
| Total Phosphorus/Persulfate Digestion/ Ultra Trace /Saline | EK267PA-SW | 1  | 10      | 10.00     | 5.00              |                 | NEPM 2013 B3 & ALS QC Standard                                                            |
|                                                            |            | •  |         |           |                   | *               | ······································                                                    |



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                        | Method    | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------|-----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Suspended Solids                                          | EA025     | WATER  | In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                               |
| Particle Sizing in Water by Laser<br>Diffraction Analysis | * EA154   | WATER  | Particle Size Analysis of Particulates in Water by Laser Diffraction Analysis according to APHA Method 2560D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dissolved Mercury by FIMS - Low Level                     | EG035F-LL | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique.<br>A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic<br>mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.<br>Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM<br>(2013) Schedule B(3) |
| Total Mercury by FIMS - Low Level                         | EG035T-LL | WATER  | In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)<br>FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise<br>any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic<br>mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing<br>absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)                                                 |
| Dissolved Metals in Saline Water -Suite<br>A by ORC-ICPMS | EG093A-F  | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                    |
| Total Metals in Saline Water Suite A by ORC-ICPMS         | EG093A-T  | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                  |
| Dissolved Metals in Saline Water -Suite<br>B by ORC-ICPMS | EG093B-F  | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                    |
| Total Metals in Saline Water -Suite B by ORC-ICPMS        | EG093B-T  | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                  |



| Analytical Methods                                            | Method     | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Metals in Fresh Water -Suite<br>A by ORC-ICPMS      | EG094A-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3) |
| Total Metals in Fresh Water -Suite A by<br>ORC-ICPMS          | EG094A-T   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                               |
| Dissolved Metals in Fresh Water -Suite<br>B by ORC-ICPMS      | EG094B-F   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020 Samples are 0.45µm filtered prior to analysis. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3) |
| Total Metals in Fresh Water -Suite B by ORC-ICPMS             | EG094B-T   | WATER  | In house: Referenced to APHA 3125; USEPA SW846 - 6020. The ORC-ICPMS technique removes interfering species through a series of chemical reactions prior to ion detection. Ions are passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to measurement by a discrete dynode ion detector. This method is compliant with NEPM (2013) Schedule B(3)                                               |
| Ammonia as N - Ultra-Trace in Saline<br>Waters                | EK255A-SW  | WATER  | In house: Referenced to APHA 4500-NH3 H. Ammonia is determined by direct colorimetry by FIA. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                                                                                     |
| Nitrite as N - Ultra-Trace in Saline<br>Waters                | EK257A-SW  | WATER  | In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by FIA.                                                                                                                                                                                                                                                                                                                                                                           |
| Nitrate as N - Ultra-Trace in Saline<br>Waters                | EK258A-SW  | WATER  | In house: Referenced to APHA 4500-NO3- I. Nitrate is reduced to nitrite by way of a cadmium reduction column followed by quantification by FIA. Nitrite is determined separately by direct colourimetry and result for Nitrate calculated as the difference between the two results.                                                                                                                                                                                     |
| Nitrite and Nitrate as N - Ultra-Trace in Saline Waters       | EK259A-SW  | WATER  | In house: Referenced to APHA 4500-NO3- I. Combined oxidised Nitrogen (NO2+NO3) is determined by Cadmium Reduction and direct colourimetry by FIA.                                                                                                                                                                                                                                                                                                                        |
| TKN (Total N - NOx-N). (FIA - UT ) in<br>Saline Waters        | EK261PA-SW | WATER  | In house: Referenced to APHA 4500-P J. & 4500-NO3- I. Calculated by difference from total Nitrogen and NOx.<br>Contributing method parameters are determined by FIA. This method is compliant with NEPM (2013) Schedule<br>B(3)                                                                                                                                                                                                                                          |
| Total Nitrogen/Persulfate<br>Digestion/Ultra-Trace/Saline     | EK262PA-SW | WATER  | In house: Referenced to APHA 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                    |
| Total Phosphorus/Persulfate Digestion/<br>Ultra Trace /Saline | EK267PA-SW | WATER  | In house: Referenced to APHA 4500-P J. Persulfate Method for Simultaneous Determination of Total Nitrogen and Total Phosphorus. As sample is digested with persulfate under alkaline conditions yielding orthophosphate and nitrate. Following digestion, analytes are determined by flow injection analysis. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                    |



| Analytical Methods                                          | Method              | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|---------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactive Phosphorus as P - Ultra-Trace<br>in Saline Water   | EK271A-SW           | WATER  | In house: Referenced to APHA 4500-P E Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by FIA. This method is compliant with NEPM (2013) Schedule B(3) |
| Total Organic Carbon                                        | EP005               | WATER  | In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by IR cell. TOC is calculated as the difference. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                  |
| Chlorophyll a and Pheophytin a                              | EP008               | WATER  | In house: Referenced to APHA 10200 H. The pigments are extracted into aqueous acetone. The optical density of the extract before and after acidification at both 664 nm and 665 nm is determined spectrometrically.                                                                                                                             |
| Preparation Methods                                         | Method              | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                             |
| Persulfate Digestion for UT Dissolved TN and TP for FIA fin | EK262/267PA-SW Prep | WATER  | In house: Referenced to APHA 4500 P - J. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                                                                                                                                                                |
| Digestion for Total Recoverable Metals -<br>ORC             | EN25-ORC            | WATER  | In house: Referenced to USEPA SW846-3005. This is an Ultrapure Nitric acid digestion procedure used to prepare surface and ground water samples for analysis by ORC- ICPMS. This method is compliant with NEPM (2013) Schedule B(3)                                                                                                             |



# **CERTIFICATE OF ANALYSIS 207221**

| Client Details |                                          |
|----------------|------------------------------------------|
| Client         | BMT                                      |
| Attention      | Darren Richardson                        |
| Address        | Lvl 8, 200 Creek St, Brisbane, QLD, 4000 |

| Sample Details                       |                     |
|--------------------------------------|---------------------|
| Your Reference                       | <u>B23483 - BMT</u> |
| Number of Samples                    | 12 Water            |
| Date samples received                | 04/12/2018          |
| Date completed instructions received | 04/12/2018          |

# **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                    |                                                                     |
|-----------------------------------|---------------------------------------------------------------------|
| Date results requested by         | 11/12/2018                                                          |
| Date of Issue                     | 11/12/2018                                                          |
| NATA Accreditation Number 290     | . This document shall not be reproduced except in full.             |
| Accredited for compliance with IS | D/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |

Results Approved By Leon Ow, Chemist Nick Sarlamis, Inorganics Supervisor

## Authorised By

Jacinta Hurst, Laboratory Manager



| HM in water - dissolved                                                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Our Reference                                                                                                                                                                                                                                                                                    |                                                                        | 207221-1                                                                                                                                                                                                                                                                      | 207221-2                                                                                                                                                                                                                | 207221-3                                                                                                                                                                                                                                               | 207221-4                                                                                                                                                                                                                                   | 207221-5                                                                                                                                                                                                                             |
| Your Reference                                                                                                                                                                                                                                                                                   | UNITS                                                                  | GAT-B-A                                                                                                                                                                                                                                                                       | DMPA-B-A                                                                                                                                                                                                                | DMPA-B-B                                                                                                                                                                                                                                               | GAT-30-A                                                                                                                                                                                                                                   | GAT-60-A                                                                                                                                                                                                                             |
| Date Sampled                                                                                                                                                                                                                                                                                     |                                                                        | 02/12/2018                                                                                                                                                                                                                                                                    | 02/12/2018                                                                                                                                                                                                              | 02/12/2018                                                                                                                                                                                                                                             | 02/12/2018                                                                                                                                                                                                                                 | 02/12/2018                                                                                                                                                                                                                           |
| Type of sample                                                                                                                                                                                                                                                                                   |                                                                        | Water                                                                                                                                                                                                                                                                         | Water                                                                                                                                                                                                                   | Water                                                                                                                                                                                                                                                  | Water                                                                                                                                                                                                                                      | Water                                                                                                                                                                                                                                |
| Date prepared                                                                                                                                                                                                                                                                                    | -                                                                      | 06/12/2018                                                                                                                                                                                                                                                                    | 06/12/2018                                                                                                                                                                                                              | 06/12/2018                                                                                                                                                                                                                                             | 06/12/2018                                                                                                                                                                                                                                 | 06/12/2018                                                                                                                                                                                                                           |
| Date analysed                                                                                                                                                                                                                                                                                    | -                                                                      | 06/12/2018                                                                                                                                                                                                                                                                    | 06/12/2018                                                                                                                                                                                                              | 06/12/2018                                                                                                                                                                                                                                             | 06/12/2018                                                                                                                                                                                                                                 | 06/12/2018                                                                                                                                                                                                                           |
| Aluminium-Dissolved                                                                                                                                                                                                                                                                              | μg/L                                                                   | <10                                                                                                                                                                                                                                                                           | <10                                                                                                                                                                                                                     | <10                                                                                                                                                                                                                                                    | <10                                                                                                                                                                                                                                        | <10                                                                                                                                                                                                                                  |
| Arsenic-Dissolved                                                                                                                                                                                                                                                                                | µg/L                                                                   | 1                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                    |
| Cadmium-Dissolved                                                                                                                                                                                                                                                                                | µg/L                                                                   | <0.1                                                                                                                                                                                                                                                                          | <0.1                                                                                                                                                                                                                    | <0.1                                                                                                                                                                                                                                                   | <0.1                                                                                                                                                                                                                                       | <0.1                                                                                                                                                                                                                                 |
| Chromium-Dissolved                                                                                                                                                                                                                                                                               | µg/L                                                                   | <1                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                   |
| Copper-Dissolved                                                                                                                                                                                                                                                                                 | µg/L                                                                   | <1                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                   |
| Iron-Dissolved                                                                                                                                                                                                                                                                                   | µg/L                                                                   | <10                                                                                                                                                                                                                                                                           | <10                                                                                                                                                                                                                     | <10                                                                                                                                                                                                                                                    | <10                                                                                                                                                                                                                                        | <10                                                                                                                                                                                                                                  |
| Lead-Dissolved                                                                                                                                                                                                                                                                                   | μg/L                                                                   | <1                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                   |
| Manganese-Dissolved                                                                                                                                                                                                                                                                              | µg/L                                                                   | <5                                                                                                                                                                                                                                                                            | <5                                                                                                                                                                                                                      | <5                                                                                                                                                                                                                                                     | <5                                                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                   |
| Mercury-Dissolved                                                                                                                                                                                                                                                                                | μg/L                                                                   | <0.05                                                                                                                                                                                                                                                                         | <0.05                                                                                                                                                                                                                   | <0.05                                                                                                                                                                                                                                                  | <0.05                                                                                                                                                                                                                                      | <0.05                                                                                                                                                                                                                                |
| Nickel-Dissolved                                                                                                                                                                                                                                                                                 | μg/L                                                                   | <1                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                   |
| Silver-Dissolved                                                                                                                                                                                                                                                                                 | μg/L                                                                   | <1                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                     | <1                                                                                                                                                                                                                                         | <1                                                                                                                                                                                                                                   |
| Zinc-Dissolved                                                                                                                                                                                                                                                                                   | µg/L                                                                   | 5                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                  |                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
| HM in water - dissolved                                                                                                                                                                                                                                                                          |                                                                        |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
| HM in water - dissolved<br>Our Reference                                                                                                                                                                                                                                                         |                                                                        | 207221-6                                                                                                                                                                                                                                                                      | 207221-7                                                                                                                                                                                                                | 207221-8                                                                                                                                                                                                                                               | 207221-9                                                                                                                                                                                                                                   | 207221-10                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                  | UNITS                                                                  | 207221-6<br>GAT-60-В                                                                                                                                                                                                                                                          | 207221-7<br>GAT-120-A                                                                                                                                                                                                   | 207221-8<br>DMPA-30-A                                                                                                                                                                                                                                  | 207221-9<br>DMPA-60-A                                                                                                                                                                                                                      | 207221-10<br>DMPA-60-B                                                                                                                                                                                                               |
| Our Reference                                                                                                                                                                                                                                                                                    | UNITS                                                                  |                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      |
| Our Reference<br>Your Reference                                                                                                                                                                                                                                                                  | UNITS                                                                  | GAT-60-B                                                                                                                                                                                                                                                                      | GAT-120-A                                                                                                                                                                                                               | DMPA-30-A                                                                                                                                                                                                                                              | DMPA-60-A                                                                                                                                                                                                                                  | DMPA-60-B                                                                                                                                                                                                                            |
| Our Reference<br>Your Reference<br>Date Sampled                                                                                                                                                                                                                                                  | UNITS<br>-                                                             | GAT-60-B<br>02/12/2018                                                                                                                                                                                                                                                        | GAT-120-A<br>02/12/2018                                                                                                                                                                                                 | DMPA-30-A<br>02/12/2018                                                                                                                                                                                                                                | DMPA-60-A<br>02/12/2018                                                                                                                                                                                                                    | DMPA-60-B<br>02/12/2018                                                                                                                                                                                                              |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample                                                                                                                                                                                                                                |                                                                        | GAT-60-B<br>02/12/2018<br>Water                                                                                                                                                                                                                                               | GAT-120-A<br>02/12/2018<br>Water                                                                                                                                                                                        | DMPA-30-A<br>02/12/2018<br>Water                                                                                                                                                                                                                       | DMPA-60-A<br>02/12/2018<br>Water                                                                                                                                                                                                           | DMPA-60-B<br>02/12/2018<br>Water                                                                                                                                                                                                     |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared                                                                                                                                                                                                               |                                                                        | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018                                                                                                                                                                                                                                 | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018                                                                                                                                                                          | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018                                                                                                                                                                                                         | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018                                                                                                                                                                                             | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018                                                                                                                                                                                       |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed                                                                                                                                                                                              | -                                                                      | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018                                                                                                                                                                                                                   | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018                                                                                                                                                            | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018                                                                                                                                                                                           | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018                                                                                                                                                                               | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018                                                                                                                                                                         |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved                                                                                                                                                                       | -<br>-<br>μg/L                                                         | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10                                                                                                                                                                                                            | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10                                                                                                                                                     | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10                                                                                                                                                                                    | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10                                                                                                                                                                        | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10                                                                                                                                                                  |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved                                                                                                                                                  | -<br>-<br>μg/L<br>μg/L                                                 | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1                                                                                                                                                                                                       | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1                                                                                                                                                | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1                                                                                                                                                                               | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>2                                                                                                                                                                   | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1                                                                                                                                                             |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved                                                                                                                             | -<br>-<br>μg/L<br>μg/L<br>μg/L                                         | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1<br><0.1                                                                                                                                                                                               | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1<br><0.1                                                                                                                                        | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1<br><0.1                                                                                                                                                                       | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>2<br><0.1                                                                                                                                                           | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1<br><0.1                                                                                                                                                     |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved                                                                                                       | -<br>-<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                 | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><0.1                                                                                                                                                                                                     | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><1                                                                                                                                                | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><0.1                                                                                                                                                                             | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>2<br><0.1<br><1                                                                                                                                                                   | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br>06/12/2018<br><10<br>1<br><0.1<br><0.1                                                                                                                                             |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved<br>Copper-Dissolved                                                                                   | -<br>-<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><0.1<br><1<br><1<br><1                                                                                                                                                                                   | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><0.1<br><1<br><1                                                                                                                                  | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><0.1<br><0.1<br><1<br><1                                                                                                                                                                 | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br>2<br><0.1<br><1<br><1<br><1                                                                                                                                                | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br>1<br><0.1<br><1<br><1<br><1                                                                                                                                     |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved<br>Copper-Dissolved<br>Iron-Dissolved                                                                 | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                         | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                                                                    | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                       | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><10                                                                                                                     | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><06/12/2018<br><10<br>2<br><0.1<br><1<br><1<br><1<br><1<br><10                                                                                                                           | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><10                                                                                                                         |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved<br>Copper-Dissolved<br>Iron-Dissolved<br>Lead-Dissolved                                               | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                 | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><0.1<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1                                                                                                                               | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><0.1<br><1<br><1<br><10<br><1<br><10<br><10<br><1                                                                                                 | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><0.1<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1                                                                                                       | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><10<br><1<br><10<br><1                                                                                                                             | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1                                                                                                           |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved<br>Chromium-Dissolved<br>Iron-Dissolved<br>Lead-Dissolved<br>Manganese-Dissolved                      | -<br>-<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><1<br><1<br><1<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><5                                                                                              | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><10<br><1<br><10<br><10 | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br>1<br><10<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><5                                                                                                           |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Dissolved<br>Arsenic-Dissolved<br>Cadmium-Dissolved<br>Cadmium-Dissolved<br>Chromium-Dissolved<br>Chromium-Dissolved<br>Iron-Dissolved<br>Lead-Dissolved<br>Manganese-Dissolved | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L | GAT-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><0.1<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><10                                   | GAT-120-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><10 | DMPA-30-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1                                                                                                             | DMPA-60-A<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><10                  | DMPA-60-B<br>02/12/2018<br>Water<br>06/12/2018<br><10<br><10<br><1<br><1<br><1<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><1<br><10<br><10 |

| HM in water - dissolved |       |            |            |
|-------------------------|-------|------------|------------|
| Our Reference           |       | 207221-11  | 207221-12  |
| Your Reference          | UNITS | DMPA-120-A | DMPA-120-B |
| Date Sampled            |       | 02/12/2018 | 02/12/2018 |
| Type of sample          |       | Water      | Water      |
| Date prepared           | -     | 06/12/2018 | 06/12/2018 |
| Date analysed           | -     | 06/12/2018 | 06/12/2018 |
| Aluminium-Dissolved     | µg/L  | <10        | <10        |
| Arsenic-Dissolved       | µg/L  | 1          | 1          |
| Cadmium-Dissolved       | µg/L  | <0.1       | <0.1       |
| Chromium-Dissolved      | µg/L  | <1         | <1         |
| Copper-Dissolved        | µg/L  | <1         | <1         |
| Iron-Dissolved          | µg/L  | <10        | <10        |
| Lead-Dissolved          | µg/L  | <1         | <1         |
| Manganese-Dissolved     | µg/L  | <5         | <5         |
| Mercury-Dissolved       | µg/L  | <0.05      | <0.05      |
| Nickel-Dissolved        | µg/L  | <1         | <1         |
| Silver-Dissolved        | µg/L  | <1         | <1         |
| Zinc-Dissolved          | µg/L  | 2          | <1         |

| HM in water - total                                                                                                                                                                                                                                                         |                                                                        |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Our Reference                                                                                                                                                                                                                                                               |                                                                        | 207221-1                                                                                                                                             | 207221-2                                                                                                                                                      | 207221-3                                                                                                              | 207221-4                                                                                                                                                               | 207221-5                                                                                                                                         |
| Your Reference                                                                                                                                                                                                                                                              | UNITS                                                                  | GAT-B-A                                                                                                                                              | DMPA-B-A                                                                                                                                                      | DMPA-B-B                                                                                                              | GAT-30-A                                                                                                                                                               | GAT-60-A                                                                                                                                         |
| Date Sampled                                                                                                                                                                                                                                                                |                                                                        | 02/12/2018                                                                                                                                           | 02/12/2018                                                                                                                                                    | 02/12/2018                                                                                                            | 02/12/2018                                                                                                                                                             | 02/12/2018                                                                                                                                       |
| Type of sample                                                                                                                                                                                                                                                              |                                                                        | Water                                                                                                                                                | Water                                                                                                                                                         | Water                                                                                                                 | Water                                                                                                                                                                  | Water                                                                                                                                            |
| Date prepared                                                                                                                                                                                                                                                               | -                                                                      | 07/12/2018                                                                                                                                           | 07/12/2018                                                                                                                                                    | 07/12/2018                                                                                                            | 07/12/2018                                                                                                                                                             | 07/12/2018                                                                                                                                       |
| Date analysed                                                                                                                                                                                                                                                               | -                                                                      | 07/12/2018                                                                                                                                           | 07/12/2018                                                                                                                                                    | 07/12/2018                                                                                                            | 07/12/2018                                                                                                                                                             | 07/12/2018                                                                                                                                       |
| Aluminium-Total                                                                                                                                                                                                                                                             | µg/L                                                                   | 60                                                                                                                                                   | 10                                                                                                                                                            | 10                                                                                                                    | 100                                                                                                                                                                    | 80                                                                                                                                               |
| Arsenic-Total                                                                                                                                                                                                                                                               | μg/L                                                                   | 2                                                                                                                                                    | 2                                                                                                                                                             | 2                                                                                                                     | 2                                                                                                                                                                      | 2                                                                                                                                                |
| Cadmium-Total                                                                                                                                                                                                                                                               | μg/L                                                                   | <0.1                                                                                                                                                 | <0.1                                                                                                                                                          | <0.1                                                                                                                  | <0.1                                                                                                                                                                   | <0.1                                                                                                                                             |
| Chromium-Total                                                                                                                                                                                                                                                              | µg/L                                                                   | <1                                                                                                                                                   | <1                                                                                                                                                            | <1                                                                                                                    | <1                                                                                                                                                                     | <1                                                                                                                                               |
| Copper-Total                                                                                                                                                                                                                                                                | μg/L                                                                   | <1                                                                                                                                                   | <1                                                                                                                                                            | <1                                                                                                                    | <1                                                                                                                                                                     | <1                                                                                                                                               |
| Iron-Total                                                                                                                                                                                                                                                                  | μg/L                                                                   | 93                                                                                                                                                   | 12                                                                                                                                                            | 13                                                                                                                    | 190                                                                                                                                                                    | 140                                                                                                                                              |
| Lead-Total                                                                                                                                                                                                                                                                  | μg/L                                                                   | <1                                                                                                                                                   | <1                                                                                                                                                            | <1                                                                                                                    | <1                                                                                                                                                                     | <1                                                                                                                                               |
| Manganese-Total                                                                                                                                                                                                                                                             | μg/L                                                                   | <5                                                                                                                                                   | <5                                                                                                                                                            | <5                                                                                                                    | 10                                                                                                                                                                     | 7                                                                                                                                                |
| Mercury-Total                                                                                                                                                                                                                                                               | μg/L                                                                   | <0.05                                                                                                                                                | <0.05                                                                                                                                                         | <0.05                                                                                                                 | <0.05                                                                                                                                                                  | <0.05                                                                                                                                            |
| Nickel-Total                                                                                                                                                                                                                                                                | μg/L                                                                   | <1                                                                                                                                                   | <1                                                                                                                                                            | <1                                                                                                                    | <1                                                                                                                                                                     | <1                                                                                                                                               |
| Silver-Total                                                                                                                                                                                                                                                                | μg/L                                                                   | <1                                                                                                                                                   | <1                                                                                                                                                            | <1                                                                                                                    | <1                                                                                                                                                                     | <1                                                                                                                                               |
| Zinc-Total                                                                                                                                                                                                                                                                  | µg/L                                                                   | 8                                                                                                                                                    | 3                                                                                                                                                             | 2                                                                                                                     | 4                                                                                                                                                                      | 3                                                                                                                                                |
|                                                                                                                                                                                                                                                                             |                                                                        |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                  |
| HM in water - total                                                                                                                                                                                                                                                         |                                                                        |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                  |
| HM in water - total<br>Our Reference                                                                                                                                                                                                                                        |                                                                        | 207221-6                                                                                                                                             | 207221-7                                                                                                                                                      | 207221-8                                                                                                              | 207221-9                                                                                                                                                               | 207221-10                                                                                                                                        |
|                                                                                                                                                                                                                                                                             | UNITS                                                                  | 207221-6<br>GAT-60-B                                                                                                                                 | 207221-7<br>GAT-120-A                                                                                                                                         | 207221-8<br>DMPA-30-A                                                                                                 | 207221-9<br>DMPA-60-A                                                                                                                                                  | 207221-10<br>DMPA-60-B                                                                                                                           |
| Our Reference                                                                                                                                                                                                                                                               | UNITS                                                                  |                                                                                                                                                      |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                                        |                                                                                                                                                  |
| Our Reference<br>Your Reference                                                                                                                                                                                                                                             | UNITS                                                                  | GAT-60-B                                                                                                                                             | GAT-120-A                                                                                                                                                     | DMPA-30-A                                                                                                             | DMPA-60-A                                                                                                                                                              | DMPA-60-B                                                                                                                                        |
| Our Reference<br>Your Reference<br>Date Sampled                                                                                                                                                                                                                             | UNITS                                                                  | GAT-60-B<br>02/12/2018                                                                                                                               | GAT-120-A<br>02/12/2018                                                                                                                                       | DMPA-30-A<br>02/12/2018                                                                                               | DMPA-60-A<br>02/12/2018                                                                                                                                                | DMPA-60-B<br>02/12/2018                                                                                                                          |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample                                                                                                                                                                                                           | UNITS<br>-<br>-                                                        | GAT-60-B<br>02/12/2018<br>Water                                                                                                                      | GAT-120-A<br>02/12/2018<br>Water                                                                                                                              | DMPA-30-A<br>02/12/2018<br>Water                                                                                      | DMPA-60-A<br>02/12/2018<br>Water                                                                                                                                       | DMPA-60-B<br>02/12/2018<br>Water                                                                                                                 |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared                                                                                                                                                                                          | UNITS<br>-<br>-<br>µg/L                                                | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018                                                                                                        | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018                                                                                                                | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018                                                                        | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018                                                                                                                         | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018                                                                                                   |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed                                                                                                                                                                         | -                                                                      | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018                                                                                          | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018                                                                                                  | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018                                                          | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018                                                                                                           | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018                                                                                     |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total                                                                                                                                                      | -<br>-<br>μg/L                                                         | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80                                                                                    | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70                                                                                            | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>220                                                   | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50                                                                                                     | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140                                                                              |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total                                                                                                                                     | -<br>-<br>μg/L<br>μg/L                                                 | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2                                                                               | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2                                                                                       | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>220<br>2                                              | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2                                                                                                | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2                                                                         |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total                                                                                                                    | -<br>-<br>μg/L<br>μg/L                                                 | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br><0.1                                                                       | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1                                                                               | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>220<br>2<br>2<br><0.1                                 | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br><0.1                                                                                        | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1                                                                 |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total<br>Chromium-Total                                                                                                  | -<br>-<br>μg/L<br>μg/L<br>μg/L<br>μg/L                                 | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br>2<br><0.1<br><1                                                            | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br>2<br><0.1<br><1                                                                    | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1                           | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>2<br><0.1<br><1                                                                             | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1<br><1                                                           |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total<br>Chromium-Total<br>Copper-Total                                                                                  | -<br>-<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br>2<br><0.1<br><1<br><1                                                      | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1<br><1<br><1                                                                   | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1<br><1                                   | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>2<br><0.1<br><1<br><1                                                                       | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1<br><1<br><1                                                     |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total<br>Chromium-Total<br>Copper-Total<br>Iron-Total                                                                    | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                         | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br>4<br>0.1<br><1<br><1<br><1<br>160                                          | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1<br><1<br><1<br><1<br>140                                                      | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1<br><1<br><1<br>560                      | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>2<br><0.1<br><1<br><1<br><1<br>82                                                           | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1<br><1<br><1<br><1<br>370                                        |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total<br>Chromium-Total<br>Copper-Total<br>Iron-Total<br>Lead-Total                                                      | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L                 | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br><0.1<br><1<br><1<br><1<br>160<br><1                                        | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1<br><1<br><1<br><1<br>140<br><1                                                | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1<br><1<br>560<br><1                      | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>2<br><0.1<br><1<br><1<br><1<br><1<br>82<br><1                                               | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1<br><1<br><1<br><1<br>370<br><1                                  |
| Our ReferenceYour ReferenceDate SampledType of sampleDate preparedDate analysedAluminium-TotalArsenic-TotalCadmium-TotalChromium-TotalCopper-TotalIron-TotalLead-TotalManganese-Total                                                                                       | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br><0.1<br><1<br><1<br><1<br>160<br><1<br>160<br><1<br>7                      | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1<br><1<br><1<br><1<br>140<br><1<br>140<br><1<br>6                              | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1<br><1<br>560<br><1<br>2<br>3            | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>3<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4 | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br><0.1<br><1<br><1<br><1<br>370<br><1<br>370<br><1<br>16               |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample<br>Date prepared<br>Date analysed<br>Aluminium-Total<br>Arsenic-Total<br>Cadmium-Total<br>Chromium-Total<br>Chromium-Total<br>Chromium-Total<br>Lead-Total<br>Iron-Total<br>Lead-Total<br>Manganese-Total | -<br>-<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L<br>µg/L | GAT-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>80<br>2<br>2<br><0.1<br><1<br><1<br>160<br><1<br>160<br><1<br>160<br><1<br>7<br><0.05 | GAT-120-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>70<br>2<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1 | DMPA-30-A<br>02/12/2018<br>Water<br>07/12/2018<br>220<br>2<br>2<br><0.1<br><1<br><1<br><1<br>560<br><1<br>23<br><0.05 | DMPA-60-A<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>50<br>2<br>2<br><0.1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1<br><1     | DMPA-60-B<br>02/12/2018<br>Water<br>07/12/2018<br>07/12/2018<br>140<br>2<br>2<br><0.1<br><1<br><1<br><1<br>370<br><1<br>370<br><1<br>16<br><0.05 |

| HM in water - total |       |            |            |
|---------------------|-------|------------|------------|
| Our Reference       |       | 207221-11  | 207221-12  |
| Your Reference      | UNITS | DMPA-120-A | DMPA-120-B |
| Date Sampled        |       | 02/12/2018 | 02/12/2018 |
| Type of sample      |       | Water      | Water      |
| Date prepared       | -     | 07/12/2018 | 07/12/2018 |
| Date analysed       | -     | 07/12/2018 | 07/12/2018 |
| Aluminium-Total     | µg/L  | 80         | 90         |
| Arsenic-Total       | µg/L  | 2          | 2          |
| Cadmium-Total       | µg/L  | <0.1       | <0.1       |
| Chromium-Total      | µg/L  | <1         | <1         |
| Copper-Total        | µg/L  | <1         | <1         |
| Iron-Total          | µg/L  | 160        | 210        |
| Lead-Total          | µg/L  | <1         | <1         |
| Manganese-Total     | µg/L  | 11         | 13         |
| Mercury-Total       | µg/L  | <0.05      | <0.05      |
| Nickel-Total        | µg/L  | <1         | <1         |
| Silver-Total        | µg/L  | <1         | <1         |
| Zinc-Total          | µg/L  | 3          | 3          |

| Miscellaneous Inorganics |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference            |       | 207221-1   | 207221-2   | 207221-3   | 207221-4   | 207221-5   |
| Your Reference           | UNITS | GAT-B-A    | DMPA-B-A   | DMPA-B-B   | GAT-30-A   | GAT-60-A   |
| Date Sampled             |       | 02/12/2018 | 02/12/2018 | 02/12/2018 | 02/12/2018 | 02/12/2018 |
| Type of sample           |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 |
| Date analysed            | -     | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 |
| Total Nitrogen in water  | mg/L  | 0.3        | <0.1       | <0.1       | <0.1       | <0.1       |
| Nitrate as N in water    | mg/L  | 0.006      | 0.008      | <0.005     | 0.006      | 0.006      |
| Nitrite as N in water    | mg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| Ammonia as N in water    | mg/L  | 0.019      | 0.012      | 0.015      | 0.017      | 0.016      |
| Phosphate as P in water  | mg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |

| Miscellaneous Inorganics |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference            |       | 207221-6   | 207221-7   | 207221-8   | 207221-9   | 207221-10  |
| Your Reference           | UNITS | GAT-60-B   | GAT-120-A  | DMPA-30-A  | DMPA-60-A  | DMPA-60-B  |
| Date Sampled             |       | 02/12/2018 | 02/12/2018 | 02/12/2018 | 02/12/2018 | 02/12/2018 |
| Type of sample           |       | Water      | Water      | Water      | Water      | Water      |
| Date prepared            | -     | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 |
| Date analysed            | -     | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 | 05/12/2018 |
| Total Nitrogen in water  | mg/L  | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Nitrate as N in water    | mg/L  | 0.005      | 0.007      | <0.005     | <0.005     | <0.005     |
| Nitrite as N in water    | mg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |
| Ammonia as N in water    | mg/L  | 0.018      | 0.016      | 0.010      | 0.01       | 0.010      |
| Phosphate as P in water  | mg/L  | <0.005     | <0.005     | <0.005     | <0.005     | <0.005     |

| Miscellaneous Inorganics |       |            |            |
|--------------------------|-------|------------|------------|
| Our Reference            |       | 207221-11  | 207221-12  |
| Your Reference           | UNITS | DMPA-120-A | DMPA-120-B |
| Date Sampled             |       | 02/12/2018 | 02/12/2018 |
| Type of sample           |       | Water      | Water      |
| Date prepared            | -     | 05/12/2018 | 05/12/2018 |
| Date analysed            | -     | 05/12/2018 | 05/12/2018 |
| Total Nitrogen in water  | mg/L  | <0.1       | <0.1       |
| Nitrate as N in water    | mg/L  | 0.01       | <0.005     |
| Nitrite as N in water    | mg/L  | <0.005     | <0.005     |
| Ammonia as N in water    | mg/L  | 0.010      | 0.015      |
| Phosphate as P in water  | mg/L  | <0.005     | <0.005     |

| Metals in Waters - Total                                          |       |                                 |                                  |                                  |                                  |                                  |
|-------------------------------------------------------------------|-------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Our Reference                                                     |       | 207221-1                        | 207221-2                         | 207221-3                         | 207221-4                         | 207221-5                         |
| Your Reference                                                    | UNITS | GAT-B-A                         | DMPA-B-A                         | DMPA-B-B                         | GAT-30-A                         | GAT-60-A                         |
| Date Sampled                                                      |       | 02/12/2018                      | 02/12/2018                       | 02/12/2018                       | 02/12/2018                       | 02/12/2018                       |
| Type of sample                                                    |       | Water                           | Water                            | Water                            | Water                            | Water                            |
| Date prepared                                                     | -     | 06/12/2018                      | 06/12/2018                       | 06/12/2018                       | 06/12/2018                       | 06/12/2018                       |
| Date analysed                                                     | -     | 07/12/2018                      | 07/12/2018                       | 07/12/2018                       | 07/12/2018                       | 07/12/2018                       |
| Phosphorus - Total                                                | mg/L  | <0.05                           | <0.05                            | <0.05                            | <0.05                            | <0.05                            |
|                                                                   |       |                                 |                                  |                                  |                                  |                                  |
| Metals in Waters - Total                                          | 1     |                                 |                                  | 1                                |                                  | 1                                |
| Metals in Waters - Total<br>Our Reference                         |       | 207221-6                        | 207221-7                         | 207221-8                         | 207221-9                         | 207221-10                        |
|                                                                   | UNITS | 207221-6<br>GAT-60-B            | 207221-7<br>GAT-120-A            | 207221-8<br>DMPA-30-A            | 207221-9<br>DMPA-60-A            | 207221-10<br>DMPA-60-B           |
| Our Reference                                                     | UNITS |                                 |                                  |                                  |                                  |                                  |
| Our Reference<br>Your Reference                                   | UNITS | GAT-60-B                        | GAT-120-A                        | DMPA-30-A                        | DMPA-60-A                        | DMPA-60-B                        |
| Our Reference<br>Your Reference<br>Date Sampled                   | UNITS | GAT-60-B<br>02/12/2018          | GAT-120-A<br>02/12/2018          | DMPA-30-A<br>02/12/2018          | DMPA-60-A<br>02/12/2018          | DMPA-60-B<br>02/12/2018          |
| Our Reference<br>Your Reference<br>Date Sampled<br>Type of sample |       | GAT-60-B<br>02/12/2018<br>Water | GAT-120-A<br>02/12/2018<br>Water | DMPA-30-A<br>02/12/2018<br>Water | DMPA-60-A<br>02/12/2018<br>Water | DMPA-60-B<br>02/12/2018<br>Water |

| Metals in Waters - Total |       |            |            |
|--------------------------|-------|------------|------------|
| Our Reference            |       | 207221-11  | 207221-12  |
| Your Reference           | UNITS | DMPA-120-A | DMPA-120-B |
| Date Sampled             |       | 02/12/2018 | 02/12/2018 |
| Type of sample           |       | Water      | Water      |
| Date prepared            | -     | 06/12/2018 | 06/12/2018 |
| Date analysed            | -     | 07/12/2018 | 07/12/2018 |
| Phosphorus - Total       | mg/L  | <0.05      | <0.05      |

| Method ID     | Methodology Summary                                                                                                                         |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Inorg-055     | Nitrate - determined colourimetrically. Soils are analysed following a water extraction.                                                    |
| Inorg-055     | Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Soils are analysed following a water extraction.                |
| Inorg-055/062 | Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.                                                                              |
| Inorg-057     | Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.             |
| Inorg-060     | Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Soils are analysed following a water extraction. |
| Metals-020    | Determination of various metals by ICP-AES.                                                                                                 |
| Metals-021    | Determination of Mercury by Cold Vapour AAS.                                                                                                |
| Metals-022    | Determination of various metals by ICP-MS.                                                                                                  |

| QUALITY CC          | ONTROL: HN | 1 in water | - dissolved |            | Duplicate |            |            |     |            | Spike Recovery % |  |
|---------------------|------------|------------|-------------|------------|-----------|------------|------------|-----|------------|------------------|--|
| Test Description    | Units      | PQL        | Method      | Blank      | #         | Base       | Dup.       | RPD | LCS-W2     | 207221-2         |  |
| Date prepared       | -          |            |             | 06/12/2018 | 1         | 06/12/2018 | 06/12/2018 |     | 06/12/2018 | 06/12/2018       |  |
| Date analysed       | -          |            |             | 06/12/2018 | 1         | 06/12/2018 | 06/12/2018 |     | 06/12/2018 | 06/12/2018       |  |
| Aluminium-Dissolved | µg/L       | 10         | Metals-022  | <10        | 1         | <10        | <10        | 0   | 119        | 116              |  |
| Arsenic-Dissolved   | µg/L       | 1          | Metals-022  | <1         | 1         | 1          | 1          | 0   | 108        | 107              |  |
| Cadmium-Dissolved   | µg/L       | 0.1        | Metals-022  | <0.1       | 1         | <0.1       | <0.1       | 0   | 107        | 94               |  |
| Chromium-Dissolved  | µg/L       | 1          | Metals-022  | <1         | 1         | <1         | <1         | 0   | 112        | 102              |  |
| Copper-Dissolved    | µg/L       | 1          | Metals-022  | <1         | 1         | <1         | <1         | 0   | 104        | 85               |  |
| Iron-Dissolved      | µg/L       | 10         | Metals-022  | <10        | 1         | <10        | <10        | 0   | 109        | 99               |  |
| Lead-Dissolved      | µg/L       | 1          | Metals-022  | <1         | 1         | <1         | <1         | 0   | 109        | 91               |  |
| Manganese-Dissolved | µg/L       | 5          | Metals-022  | <5         | 1         | <5         | <5         | 0   | 113        | 106              |  |
| Mercury-Dissolved   | µg/L       | 0.05       | Metals-021  | <0.05      | 1         | <0.05      | <0.05      | 0   | 90         | 84               |  |
| Nickel-Dissolved    | µg/L       | 1          | Metals-022  | <1         | 1         | <1         | <1         | 0   | 108        | 91               |  |
| Silver-Dissolved    | µg/L       | 1          | Metals-022  | <1         | 1         | <1         | <1         | 0   | 110        | 90               |  |
| Zinc-Dissolved      | µg/L       | 1          | Metals-022  | <1         | 1         | 5          | 4          | 22  | 108        | 95               |  |

| QUALITY CC          | ONTROL: HI | 1 in water | - dissolved |       |    | Du         |            | Spike Recovery % |      |      |
|---------------------|------------|------------|-------------|-------|----|------------|------------|------------------|------|------|
| Test Description    | Units      | PQL        | Method      | Blank | #  | Base       | Dup.       | RPD              | [NT] | [NT] |
| Date prepared       | -          |            |             | [NT]  | 11 | 06/12/2018 | 06/12/2018 |                  |      |      |
| Date analysed       | -          |            |             | [NT]  | 11 | 06/12/2018 | 06/12/2018 |                  |      |      |
| Aluminium-Dissolved | µg/L       | 10         | Metals-022  | [NT]  | 11 | <10        | <10        | 0                |      |      |
| Arsenic-Dissolved   | µg/L       | 1          | Metals-022  | [NT]  | 11 | 1          | 1          | 0                |      |      |
| Cadmium-Dissolved   | µg/L       | 0.1        | Metals-022  | [NT]  | 11 | <0.1       | <0.1       | 0                |      |      |
| Chromium-Dissolved  | µg/L       | 1          | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      |      |
| Copper-Dissolved    | µg/L       | 1          | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      |      |
| Iron-Dissolved      | µg/L       | 10         | Metals-022  | [NT]  | 11 | <10        | <10        | 0                |      |      |
| Lead-Dissolved      | µg/L       | 1          | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      |      |
| Manganese-Dissolved | µg/L       | 5          | Metals-022  | [NT]  | 11 | <5         | <5         | 0                |      |      |
| Mercury-Dissolved   | µg/L       | 0.05       | Metals-021  | [NT]  | 11 | <0.05      | <0.05      | 0                |      |      |
| Nickel-Dissolved    | µg/L       | 1          | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      |      |
| Silver-Dissolved    | µg/L       | 1          | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      |      |
| Zinc-Dissolved      | µg/L       | 1          | Metals-022  | [NT]  | 11 | 2          | 1          | 67               |      |      |

| QUALITY          | CONTROL: | HM in wa | ter - total |            | Duplicate Spike Recov |            |            |     |            |            |
|------------------|----------|----------|-------------|------------|-----------------------|------------|------------|-----|------------|------------|
| Test Description | Units    | PQL      | Method      | Blank      | #                     | Base       | Dup.       | RPD | LCS-W2     | 207221-2   |
| Date prepared    | -        |          |             | 07/12/2018 | 1                     | 07/12/2018 | 07/12/2018 |     | 07/12/2018 | 07/12/2018 |
| Date analysed    | -        |          |             | 07/12/2018 | 1                     | 07/12/2018 | 07/12/2018 |     | 07/12/2018 | 07/12/2018 |
| Aluminium-Total  | µg/L     | 10       | Metals-022  | <10        | 1                     | 60         | 70         | 15  | 108        | 101        |
| Arsenic-Total    | µg/L     | 1        | Metals-022  | <1         | 1                     | 2          | 2          | 0   | 99         | 98         |
| Cadmium-Total    | µg/L     | 0.1      | Metals-022  | <0.1       | 1                     | <0.1       | <0.1       | 0   | 99         | 87         |
| Chromium-Total   | µg/L     | 1        | Metals-022  | <1         | 1                     | <1         | <1         | 0   | 106        | 97         |
| Copper-Total     | µg/L     | 1        | Metals-022  | <1         | 1                     | <1         | <1         | 0   | 106        | 103        |
| Iron-Total       | µg/L     | 10       | Metals-022  | <10        | 1                     | 93         | 100        | 7   | 105        | 94         |
| Lead-Total       | µg/L     | 1        | Metals-022  | <1         | 1                     | <1         | <1         | 0   | 100        | 89         |
| Manganese-Total  | µg/L     | 5        | Metals-022  | <5         | 1                     | <5         | <5         | 0   | 109        | 102        |
| Mercury-Total    | µg/L     | 0.05     | Metals-021  | <0.05      | 1                     | <0.05      | <0.05      | 0   | 98         | 87         |
| Nickel-Total     | µg/L     | 1        | Metals-022  | <1         | 1                     | <1         | <1         | 0   | 101        | 84         |
| Silver-Total     | µg/L     | 1        | Metals-022  | <1         | 1                     | <1         | <1         | 0   | 102        | 84         |
| Zinc-Total       | µg/L     | 1        | Metals-022  | <1         | 1                     | 8          | 8          | 0   | 101        | 86         |

| QUALITY          | CONTROL: | HM in wa | ter - total |       |    | Du         |            | Spike Recovery % |      |      |
|------------------|----------|----------|-------------|-------|----|------------|------------|------------------|------|------|
| Test Description | Units    | PQL      | Method      | Blank | #  | Base       | Dup.       | RPD              | [NT] | [NT] |
| Date prepared    | -        |          |             | [NT]  | 11 | 07/12/2018 | 07/12/2018 |                  |      | [NT] |
| Date analysed    | -        |          |             | [NT]  | 11 | 07/12/2018 | 07/12/2018 |                  |      | [NT] |
| Aluminium-Total  | µg/L     | 10       | Metals-022  | [NT]  | 11 | 80         | 80         | 0                |      | [NT] |
| Arsenic-Total    | μg/L     | 1        | Metals-022  | [NT]  | 11 | 2          | 2          | 0                |      | [NT] |
| Cadmium-Total    | µg/L     | 0.1      | Metals-022  | [NT]  | 11 | <0.1       | <0.1       | 0                |      | [NT] |
| Chromium-Total   | μg/L     | 1        | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      | [NT] |
| Copper-Total     | μg/L     | 1        | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      | [NT] |
| Iron-Total       | μg/L     | 10       | Metals-022  | [NT]  | 11 | 160        | 170        | 6                |      | [NT] |
| Lead-Total       | μg/L     | 1        | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      | [NT] |
| Manganese-Total  | μg/L     | 5        | Metals-022  | [NT]  | 11 | 11         | 11         | 0                |      | [NT] |
| Mercury-Total    | μg/L     | 0.05     | Metals-021  | [NT]  | 11 | <0.05      | <0.05      | 0                |      | [NT] |
| Nickel-Total     | µg/L     | 1        | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      | [NT] |
| Silver-Total     | µg/L     | 1        | Metals-022  | [NT]  | 11 | <1         | <1         | 0                |      | [NT] |
| Zinc-Total       | µg/L     | 1        | Metals-022  | [NT]  | 11 | 3          | 3          | 0                |      | [NT] |

| QUALITY COI             | NTROL: Mis | cellaneou | s Inorganics  |            |   | Du         |            | Spike Recovery % |            |            |
|-------------------------|------------|-----------|---------------|------------|---|------------|------------|------------------|------------|------------|
| Test Description        | Units      | PQL       | Method        | Blank      | # | Base       | Dup.       | RPD              | LCS-W1     | 207221-2   |
| Date prepared           | -          |           |               | 05/12/2018 | 1 | 05/12/2018 | 05/12/2018 |                  | 05/12/2018 | 05/12/2018 |
| Date analysed           | -          |           |               | 05/12/2018 | 1 | 05/12/2018 | 05/12/2018 |                  | 05/12/2018 | 05/12/2018 |
| Total Nitrogen in water | mg/L       | 0.1       | Inorg-055/062 | <0.1       | 1 | 0.3        | 0.2        | 40               | 112        | 102        |
| Nitrate as N in water   | mg/L       | 0.005     | Inorg-055     | <0.005     | 1 | 0.006      | 0.005      | 18               | 99         | #          |
| Nitrite as N in water   | mg/L       | 0.005     | Inorg-055     | <0.005     | 1 | <0.005     | <0.005     | 0                | 113        | 103        |
| Ammonia as N in water   | mg/L       | 0.005     | Inorg-057     | <0.005     | 1 | 0.019      | 0.019      | 0                | 102        | 116        |
| Phosphate as P in water | mg/L       | 0.005     | Inorg-060     | <0.005     | 1 | <0.005     | <0.005     | 0                | 117        | 109        |

| QUALITY COI             | NTROL: Mis | cellaneou | is Inorganics |       | Duplicate |            |            |     |      | covery % |
|-------------------------|------------|-----------|---------------|-------|-----------|------------|------------|-----|------|----------|
| Test Description        | Units      | PQL       | Method        | Blank | #         | Base       | Dup.       | RPD | [NT] | [NT]     |
| Date prepared           | -          |           |               | [NT]  | 11        | 05/12/2018 | 05/12/2018 |     | [NT] | [NT]     |
| Date analysed           | -          |           |               | [NT]  | 11        | 05/12/2018 | 05/12/2018 |     | [NT] | [NT]     |
| Total Nitrogen in water | mg/L       | 0.1       | Inorg-055/062 | [NT]  | 11        | <0.1       | <0.1       | 0   | [NT] | [NT]     |
| Nitrate as N in water   | mg/L       | 0.005     | Inorg-055     | [NT]  | 11        | 0.01       | 0.01       | 0   | [NT] | [NT]     |
| Nitrite as N in water   | mg/L       | 0.005     | Inorg-055     | [NT]  | 11        | <0.005     | <0.005     | 0   | [NT] | [NT]     |
| Ammonia as N in water   | mg/L       | 0.005     | Inorg-057     | [NT]  | 11        | 0.010      | 0.011      | 10  | [NT] | [NT]     |
| Phosphate as P in water | mg/L       | 0.005     | Inorg-060     | [NT]  | 11        | <0.005     | <0.005     | 0   | [NT] | [NT]     |

| QUALITY            | CONTROL: Me | etals in W | aters - Total |            |    | Du         | plicate    |     | Spike Recovery % |            |  |
|--------------------|-------------|------------|---------------|------------|----|------------|------------|-----|------------------|------------|--|
| Test Description   | Units       | PQL        | Method        | Blank      | #  | Base       | Dup.       | RPD | LCS-W3           | 207221-2   |  |
| Date prepared      | -           |            |               | 06/12/2018 | 1  | 06/12/2018 | 06/12/2018 |     | 06/12/2018       | 06/12/2018 |  |
| Date analysed      | -           |            |               | 07/12/2018 | 1  | 07/12/2018 | 07/12/2018 |     | 07/12/2018       | 07/12/2018 |  |
| Phosphorus - Total | mg/L        | 0.05       | Metals-020    | <0.05      | 1  | <0.05      | <0.05      | 0   | 103              | 114        |  |
| QUALITY            | CONTROL: Me | etals in W | aters - Total |            |    | Du         | plicate    |     | Spike Re         | covery %   |  |
| Test Description   | Units       | PQL        | Method        | Blank      | #  | Base       | Dup.       | RPD | [NT]             | [NT]       |  |
| Date prepared      | -           |            |               | [NT]       | 11 | 06/12/2018 | 06/12/2018 |     | [NT]             | [NT]       |  |
| Date analysed      | -           |            |               | [NT]       | 11 | 07/12/2018 | 07/12/2018 |     | [NT]             | [NT]       |  |
| Phosphorus - Total | mg/L        | 0.05       | Metals-020    | [NT]       | 11 | <0.05      | <0.05      | 0   | [NT]             | [NT]       |  |

| Result Definiti | Result Definitions                        |  |  |  |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |  |  |  |
| INS             | Insufficient sample for this test         |  |  |  |  |  |  |  |  |
| PQL             | Practical Quantitation Limit              |  |  |  |  |  |  |  |  |
| <               | Less than                                 |  |  |  |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |  |  |  |

| Quality Contro                     | Quality Control Definitions                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |  |  |  |  |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |  |  |  |  |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |  |  |  |  |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |  |  |  |  |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |  |  |  |  |  |  |  |  |  |
| Australian Drinking                | Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than                                                                                                                        |  |  |  |  |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

# Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.


Measurement Uncertainty estimates are available for most tests upon request.

# **Report Comments**

MISC\_INORG: Nitrate # Percent recovery is not possible to report due to matrix interference. . However an acceptable recovery was obtained for the LCS.

BMT has a proven record in addressing today's engineering and environmental issues.

Our dedication to developing innovative approaches and solutions enhances our ability to meet our client's most challenging needs.



#### **Brisbane**

Level 8, 200 Creek Street Brisbane Queensland 4000 PO Box 203 Spring Hill Queensland 4004 Australia Tel +61 7 3831 6744 Fax +61 7 3832 3627 Email brisbane@bmtglobal.com

#### Melbourne

Level 5, 99 King Street Melbourne Victoria 3000 Australia Tel +61 3 8620 6100 Fax +61 3 8620 6105 Email melbourne@bmtglobal.com

#### Newcastle

126 Belford Street Broadmeadow New South Wales 2292 PO Box 266 Broadmeadow New South Wales 2292 Australia Tel +61 2 4940 8882 Fax +61 2 4940 8887 Email newcastle@bmtglobal.com

### Adelaide

5 Hackney Road Hackney Adelaide South Australia 5069 Australia Tel +61 8 8614 3400 Email info@bmtdt.com.au

#### **Northern Rivers**

Suite 5 20 Byron Street Bangalow New South Wales 2479 Australia Tel +61 2 6687 0466 Fax +61 2 6687 0422 Email northernrivers@bmtglobal.com

#### Sydney

Suite G2, 13-15 Smail Street Ultimo Sydney New South Wales 2007 Australia Tel +61 2 8960 7755 Fax +61 2 8960 7745 Email sydney@bmtglobal.com

## Perth

Level 4 20 Parkland Road Osborne Park Western Australia 6017 PO Box 2305 Churchlands Western Australia 6018 Australia Tel +61 8 6163 4900 Email wa@bmtglobal.com

## London

1st Floor, International House St Katharine's Way London E1W 1UN Tel +44 (0) 20 8090 1566 Email london@bmtglobal.com

#### Aberdeen

Broadfold House Broadfold Road, Bridge of Don Aberdeen AB23 8EE UK Tel: +44 (0) 1224 414 200 Fax: +44 (0) 1224 414 250 Email aberdeen@bmtglobal.com

## Asia Pacific

Indonesia Office Perkantoran Hijau Arkadia Tower C, P Floor Jl: T.B. Simatupang Kav.88 Jakarta, 12520 Indonesia Tel: +62 21 782 7639 Fax: +62 21 782 7636 Email asiapacific@bmtglobal.com

### Alexandria

4401 Ford Avenue, Suite 1000 Alexandria VA 22302 USA Tel: +1 703 920 7070 Fax: +1 703 920 7177 Email inguiries@dandp.com